Chapter 7: Evaluation of Improper Integrals • Advice 1: • Page No. 257:
Q. Nos.: 1 - 5
(1) Let f(x) is continuous for all x ≥ 0, then ∞
∫
R
∫ R →∞
f ( x)dx = lim
0
f ( x) dx
0
provided the limit on RHS exists.
( 2) Let f(x) is continuous for all x. ∞
then
∫
f ( x) dx
-∞ 0
= lim
∫
R1→∞ − R1
R2
∫ R2 →∞
f ( x) dx + lim
f ( x)dx,
0
provided both the limits on RHS exist.
Cauchy principal value (P.V.) of the integral (2) is the number ∞
P.V. ∫ f(x) dx = lim -∞
R →∞
R
∫
-R
f ( x) dx,
provided the limit on RHS. exist.
Remark : (1) Existence of improper integral ∞
∫-∞
f ( x) dx implies the existence of ∞
P.V. ∫ f ( x) dx ∞
But converse is not true.
Ex. Let f(x) = x.Then ∞
P.V. ∫ f ( x ) dx = lim -∞
R →∞
R
x = lim = 0 R →∞ 2 −R 2
∫
R
xdx
−R
∞
But
∫
f ( x) dx
−∞
= lim
0
xdx + lim ∫
R1→∞ − R1
= − lim
R1→∞
2 R1
2
R2
xdx ∫
R2 →∞ 0 2 R2
+ lim
R2 →∞
2
∴ Limit on RHS fails to exist ⇒ The improper integral ∞
f ( x ) dx fails to exist . ∫
−∞
If the function f(x) ( − ∞ < x < ∞) is an even function i.e. f(-x) =f(x) for all x, then the symmetry of the graph of y = f(x) with respect to y axis leads to R
∫
−R
R
f ( x)dx = 2 ∫ f ( x)dx 0
When f(x) is an even function and the Cauchy pricncipal value exists, then ∞
∞
−∞
−∞
P.V . ∫ f ( x)dx =
∫
∞
f ( x)dx = 2 ∫ f ( x)dx 0
To evaluate improper integral of Even Rational Functions f(x)=p(x)/q(x) • p(x) and q(x) are polynomials with real coefficients and no factors in common • q(z) has no real zeros but has at least one zero above the real axis.
Method • Identify all distinct zeros of the polynomial q(z) that lie above the real axis • They will be finite in number • May be labeled as z1, z2,…..zn where n is less than or equal to the degree of q(z) • Now, integrate the quotient f(z)=p(z)/q(z) around the positively oriented boundary of the semicircular region.
The simple consists of
closed
contour
• The segment of the real axis from z = -R to z =R and • The top half of the circle z = R described counterclockwise and denoted by CR.
Remark: •The positive number R is large enough that the points z1, z2,… zn all lie inside closed path.
. CR
zi
-R
z1
O
R
From Cauchy Residue theorem R
∫
−R
f ( x)dx +
∫
CR
n
f ( z )dz = 2πi ∑ Res f ( z ) z = z k k =1
If lim
R →∞
∫
f ( z )dz = 0,
CR
then it follows ∞
n
P.V . ∫ f ( x)dx = 2πi ∑ Res f ( z ) −∞
z = z k k =1
If f(x) is even, then ∞
n
−∞
k =1
f ( z) ∫ f ( x)dx = 2πi ∑ zRes =z k
and ∞
∫ 0
n
f ( x)dx = πi ∑ Res f ( z ) z = z k k =1
∞
Q.4 Evaluate I = ∫ 0
2
(
x dx 2 2 x +1 x + 4
)(
)
cR
-R
R
Let f(z) =
z
2
( z + 1)( z 2
2
+4
)
& C = [ − R, R ]U C R
then R
∫
−R
2
x dx
( x + 1)( x 2
2
+4
)
+
∫ f ( z ) dz = 2πi ∑
CR
Re s z = zk
f ( z)
clearly z = ±i, ± 2i are poles of order of 1 of f(z) but z = -i, - zi lie outside the region C.
∴Re s f ( z ) = z =i
z
2
( z + i ) ( z + 4) 2
2
i i = = 2i × 3 6
z =i
2
z Re s f ( z ) = 2 z = 2i z + 1 ( z + 2i ) −4 −i = = − 3 × 4i 3
(
)
z = 2i
∴ (1) ⇒ R
∫(
−R
2
x dx i i + f ( z ) dz = 2 π i − ∫ 2 2 x +1 x + 4 C 6 3
)(
)
R
=π /3
f ( z) =
z 2
2 2
z +1 z + 4
≤
z
2
( z − 1)( z − 4) 2
2
f ( z ) = • …
z
.
2
z +1 z + 4 2
2
≤
(z
z
2
2
− 1)( z − 4 ) 2
2
R = 2 2 (R − 1)( R − 4) on z = Re
iθ
Hence R .π R ∫ f ( z ) dz ≤ 2 2 C ( R − 1)( R − 4) (M L inequality) as L = πR 2
R
π = → 0 as R → ∞ 1 4 R1 − 2 1 − 2 R R
which yields ∞
∫(
−∞
x dx π = 2 2 3 x +1 x + 4 2
∞
⇒ 2∫ 0
∞
⇒∫ 0
(
)(
)
2
x dx
( x + 1)( x 2
2
2
+4
)
=π 3
π = 2 2 x +1 x + 4 6 x dx
)(
)
Sec 73 & 74 Advice 2: Page No. 265, Q. Nos.: 1 and 6
Evaluation of improper integral of ∞ ∞ f ( x ) cos ax dx form ∫− ∞ and ∫− ∞ f ( x) sin ax dx R
∫ f ( x) e
iax
−R
R
R
−R
−R
dx = ∫ f ( x) cos ax dx + i ∫ f ( x) sin ax dx
( together with the fact that the modulus e
iaz
=e
ia ( x +iy )
=e
− ay
.e
iax
⇒e
iaz
=e
− ay
is bounded in the upper half plane y ≥ 0
cos x dx Q.1 I = ∫ 2 , a > b > 0 2 2 2 − ∞ ( x + a )( x + b ) ∞
Let f ( z ) =
(z
1
+ a )( z + b & C = [ − R, R ] ∪ C R 2
2
2
2
)
cR -R
R
f ( z ) has singularity at z = ± ai, ± bi out of which z = ai, bi are inside C & they are simple poles
Re s f ( z ) e = iz
z = ai
−a
e
iz
( z + ai ) ( z + b 2
−a
2
e ie = = − 2 2 2 2 2ai ( b − a ) 2a ( b − a )
)
z = ai
iz
e Re s f ( z )e = 2 2 z = bi ( z + a )( z + bi ) −b −b e ie = = 2 2 2 2 2bi ( a − b ) 2b( b − a ) iz
z = bi
ix
e dx iz ∴∫ 2 + f ( z ) e ∫ 2 2 2 − R ( x + a )( x + b ) C R
= 2πi ∑ Re s ( f ( z )e
2πi.i = 2 2 2 b −a
(
−b
)
iz
)
R
−a e −b e − b a −a
π e e = 2 − 2 a a −b b
Taking real parts, we get R
∫(
−R
cos x dx iz + Re f ( z ) e ∫ 2 2 2 2 x +a x +b CR
)(
)
π e e = 2 2 − a a −b b −b
−a
(1)
∴e =e & on C R iz
f ( z) =
−y
(z
≤1 ∀ y ≥ 0
1
+ a )( z + b 1 ≤ 2 2 2 2 ( R − a )( R − b ) 2
2
2
2
)
∴ Re ∫ e f ( z ) dz ≤
( ) e f z dz ∫
iz
CR
iz
CR
πR ≤ 2 2 2 2 R −a R −b =
π 3
(
)(
a b R 1 − 2 1 − 2 R R 2
2
)
→ 0 as R → ∞
∴(1) yields ∞
∫(
−∞
cos x dx 2 2 2 2 x + a x +b
)(
)
e e = 2 − 2 a a −b b
π
−b
−a
Jordan' s Lemma : Suppose that (i) a function f(z) is analytic at all points z in the upper half plane y ≥ 0 that are exterior to the circle z = R 0 ;
iθ
(ii ) C R : z = R e , 0 ≤ θ ≤ π , R > R0 ; (iii ) for all points z on C R , there is a positive constant M R such that f ( z ) ≤ M R , where lim M R = 0.
R→∞
Then, for every positive constant a, lim
R →∞
∫
CR
f ( z) e
iaz
dz = 0
3
x sin ax Q .6 I = ∫ dx , a > 0 4 −∞ x + 4 ∞
3 iaz
z e Let f ( z ) = 4 z +4
z + 4 = 0 ⇒ z = −4 4
4
⇒ z = ( − 4) = ( 4( − 1) ) = ( 4e
1 4
1 4
)
1 ( π + 2 kπ ) i 4
⇒ zk = 2 e
, k = 0, 1,2,3
π kπ + 4 2
i
, k = 0,1, 2, 3
For k=0
z0 = 2 e π π = 2 ( cos 4 + i sin 4 ) = 1+ i iπ 4
For k=1 π π + i 4 2
z1 = 2 e π π π π = 2 cos + + i sin + 4 2 4 2 1 1 = 2− +i 2 2 = −1 + i
For k=2 π +π i 4
z2 = 2 e π = 2 cos π + + i sin ( π + π 4 ) 4 1 1 = 2 − − = −1 − i 2 2
For k=3 π 3π + 4 2
i
z3 = 2 e 7π 7π = 2 cos + i sin 4 4 =1 − i
simple poles are z 0 = 1 + i & z1 = −1 + i which are inside C. 3 iaz
z e Re s f ( z ) = Re s 4 z =z z =1+i z +4 3 iaz ze = z =1+i 3 4z 1 ia ( 1+i ) = e 4 0
3 iaz
ze Re s f ( z ) = 3 z=z 4z
z = −1+ i
1
1 ia ( −1+i ) = e 4 1 − ai .e = e 4 −a
1 − a ai − ai Re s f ( z ) + Re s f ( z ) = e [ e + e ] z= z z= z 4 1 −a = e ( cos a + i sin a + cos a − i sin a ) 4 1 −a = e cos a 2 0
1
Now we have R
3 iax
x e dx + f ( z ) dz ∫ x 4 +4 ∫ -R CR =2πi ∑Re s f ( z ) 1 −a =2πi e cos a 2 −a =πie cos a
Taking Imaginary parts, we have R
3 iax
xe Im ∫ 4 dx + Im ∫ f ( z ) dz x + 4 -R C R
= Im(2πi ∑ Re s f ( z ) ) −a
= π e cos a
Hence R
3
x sin ax dx + Im f ( z ) dz ∫ x4 + 4 ∫ -R CR =π e
−a
cos a
We have 3 iaz
ze f(z) = 4 z +4 3
z Let φ ( z ) = 4 z +4
On C R : z = R , we get 3
R φ ( z) ≤ 4 → 0 as R → ∞ R −4 Hence by Jordan' s Lemma lim
R →∞
φ ( z ) e dz = 0 ∫ iaz
CR
Thus, on taking lim it when R → ∞, we get ∞
3
x sin ax −a dx = π e cos a ∫ x4 + 4 −∞
3
x sin ax −a ⇒ ∫ dx = π e cos a 4 −∞ x + 4 ∞
SEC 78 • Advice 3: • Page No. 280: Q. Nos. : 1 - 6
Definite integrals involving sines and cosines : Consider the integral 2π
I = ∫ F ( cos θ , sin θ ) dθ 0
iθ
Let z = e , 0 ≤ θ ≤ 2π dz iθ ⇒ dz = i.e dθ ⇒ = dθ iz
Also z = 1 1 1 1 iθ − iθ z + = ( e + e ) = cos θ 2 z 2 1 1 1 iθ − iθ z − = ( e − e ) = sin θ 2i z 2i
2π
∴ I = ∫ F ( cos θ , sin θ ) dθ 0
= ∫ f ( z ) dz = 2πi ∑ Re s f ( z ) C : z =1
dθ Q1. Evaluate I = ∫ 0 5 + 4 sin θ 2π
∴ Let z = e
iθ
dz then I = ∫ 1 1 C : z =1 iz 5 + 4 z − 2i z dz =∫ 2 C 5iz + 2 z − 2
2 z + 5iz − 2 2 = 2 z + 4iz + iz − 2 = 2 z ( z + 2i ) + i ( z + 2i ) = ( z + 2i )( 2 z + i ) i = 2( z + 2i ) z + 2 2
∴ I = ∫ f ( z ) dz , c
1 where f ( z ) = 2( z + 2i )( z + i 2 )
−i z = −2i, are simple poles of f(z) 2 -i but z = is the only pole which inside C. 2
1 Re s f ( z ) = z = −i 2 2( z + 2i )
z =−i / 2
1
1 = = −i 3i 2 + 2i 2
1 2π ∴ I = 2πi × = 3i 3
π
cos 2θ dθ Q.5 I = ∫ , a < 1 2 1 − 2 a cos θ + a 0
1 1 we have cosθ = z + , 2 z 1 1 iθ sin θ = z − , z = e 2i z
∴1 − 2 a cosθ + a
2
1 1 2 = 1 − 2a z + + a 2 z a 1 = − ( z − a) z − z a
cos 2θ = 2 cos θ −1 2
2
1 1 = 2. z + −1 4 z
(
)
1 4 = 2 z +1 2z
π
∴I = ∫
cos 2θ . dθ 2
1 + a − 2 a cos θ 0
1 = 2
2π
cos 2θ . dθ
∫ 1 + a 2 − 2a cosθ
( z + 1)dz
0
1 =− ∫ 4ai c
4
1 z ( z − a ) z − a 2
z +1 Let f ( z ) = 1 2 z ( z − a) z − a 1 then z = a, are simple poles a & z = 0 is a pole of order 2 of f(z) 4
1 ∴ a <1⇒ >1 a ∴ z = 0 & z = a are the only poles which are inside C.
z +1 Re s f ( z ) = z=a 1 2 z z− a z=a 4 a +1 = 2 a (a − 1) 4
4 d z +1 Re s f ( z ) = z= 0 dz 1 ( z − a) z − a z= 0 a +1 = a 2
Re s f ( z ) +Re s f ( z ) z =a
z =0
a +1 a +1 = + 2 a (a −1) a 4
2
a +1 +a −1 = 2 a (a −1) 4
4
3
a = 2 a −1
3
1 a ∴I = − × 2πi × 2 4ai a −1 2 aπ = 2 1− a