17 Evaluation Of Improper Integrals

  • Uploaded by: alienxx
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 17 Evaluation Of Improper Integrals as PDF for free.

More details

  • Words: 3,079
  • Pages: 74
Chapter 7: Evaluation of Improper Integrals • Advice 1: • Page No. 257:

Q. Nos.: 1 - 5

(1) Let f(x) is continuous for all x ≥ 0, then ∞



R

∫ R →∞

f ( x)dx = lim

0

f ( x) dx

0

provided the limit on RHS exists.

( 2) Let f(x) is continuous for all x. ∞

then



f ( x) dx

-∞ 0

= lim



R1→∞ − R1

R2

∫ R2 →∞

f ( x) dx + lim

f ( x)dx,

0

provided both the limits on RHS exist.

Cauchy principal value (P.V.) of the integral (2) is the number ∞

P.V. ∫ f(x) dx = lim -∞

R →∞

R



-R

f ( x) dx,

provided the limit on RHS. exist.

Remark : (1) Existence of improper integral ∞

∫-∞

f ( x) dx implies the existence of ∞

P.V. ∫ f ( x) dx ∞

But converse is not true.

Ex. Let f(x) = x.Then ∞

P.V. ∫ f ( x ) dx = lim -∞

R →∞

R

x  = lim   = 0 R →∞ 2   −R 2



R

xdx

−R



But



f ( x) dx

−∞

= lim

0

xdx + lim ∫

R1→∞ − R1

= − lim

R1→∞

2 R1

2

R2

xdx ∫

R2 →∞ 0 2 R2

+ lim

R2 →∞

2

∴ Limit on RHS fails to exist ⇒ The improper integral ∞

f ( x ) dx fails to exist . ∫

−∞

If the function f(x) ( − ∞ < x < ∞) is an even function i.e. f(-x) =f(x) for all x, then the symmetry of the graph of y = f(x) with respect to y axis leads to R



−R

R

f ( x)dx = 2 ∫ f ( x)dx 0

When f(x) is an even function and the Cauchy pricncipal value exists, then ∞



−∞

−∞

P.V . ∫ f ( x)dx =





f ( x)dx = 2 ∫ f ( x)dx 0

To evaluate improper integral of Even Rational Functions f(x)=p(x)/q(x) • p(x) and q(x) are polynomials with real coefficients and no factors in common • q(z) has no real zeros but has at least one zero above the real axis.

Method • Identify all distinct zeros of the polynomial q(z) that lie above the real axis • They will be finite in number • May be labeled as z1, z2,…..zn where n is less than or equal to the degree of q(z) • Now, integrate the quotient f(z)=p(z)/q(z) around the positively oriented boundary of the semicircular region.

The simple consists of

closed

contour

• The segment of the real axis from z = -R to z =R and • The top half of the circle z = R described counterclockwise and denoted by CR.

Remark: •The positive number R is large enough that the points z1, z2,… zn all lie inside closed path.

. CR

zi

-R

z1

O

R

From Cauchy Residue theorem R



−R

f ( x)dx +



CR

n

f ( z )dz = 2πi ∑ Res f ( z ) z = z k k =1

If lim

R →∞



f ( z )dz = 0,

CR

then it follows ∞

n

P.V . ∫ f ( x)dx = 2πi ∑ Res f ( z ) −∞

z = z k k =1

If f(x) is even, then ∞

n

−∞

k =1

f ( z) ∫ f ( x)dx = 2πi ∑ zRes =z k

and ∞

∫ 0

n

f ( x)dx = πi ∑ Res f ( z ) z = z k k =1



Q.4 Evaluate I = ∫ 0

2

(

x dx 2 2 x +1 x + 4

)(

)

cR

-R

R

Let f(z) =

z

2

( z + 1)( z 2

2

+4

)

& C = [ − R, R ]U C R

then R



−R

2

x dx

( x + 1)( x 2

2

+4

)

+

∫ f ( z ) dz = 2πi ∑

CR

Re s z = zk

f ( z)

clearly z = ±i, ± 2i are poles of order of 1 of f(z) but z = -i, - zi lie outside the region C.

∴Re s f ( z ) = z =i

z

2

( z + i ) ( z + 4) 2

2

i i = = 2i × 3 6

z =i

2

z Re s f ( z ) = 2 z = 2i z + 1 ( z + 2i ) −4 −i = = − 3 × 4i 3

(

)

z = 2i

∴ (1) ⇒ R

∫(

−R

2

x dx i i + f ( z ) dz = 2 π i −   ∫ 2 2 x +1 x + 4 C  6 3

)(

)

R

=π /3

f ( z) =

z 2

2 2

z +1 z + 4



z

2

( z − 1)( z − 4) 2

2

f ( z ) = • …

z

.

2

z +1 z + 4 2

2



(z

z

2

2

− 1)( z − 4 ) 2

2

R = 2 2 (R − 1)( R − 4) on z = Re



Hence R .π R ∫ f ( z ) dz ≤ 2 2 C ( R − 1)( R − 4) (M L inequality) as L = πR 2

R

π = → 0 as R → ∞ 1  4   R1 − 2 1 − 2   R  R 

which yields ∞

∫(

−∞

x dx π = 2 2 3 x +1 x + 4 2



⇒ 2∫ 0



⇒∫ 0

(

)(

)

2

x dx

( x + 1)( x 2

2

2

+4

)

=π 3

π = 2 2 x +1 x + 4 6 x dx

)(

)

Sec 73 & 74 Advice 2: Page No. 265, Q. Nos.: 1 and 6

Evaluation of improper integral of ∞ ∞ f ( x ) cos ax dx form ∫− ∞ and ∫− ∞ f ( x) sin ax dx R

∫ f ( x) e

iax

−R

R

R

−R

−R

dx = ∫ f ( x) cos ax dx + i ∫ f ( x) sin ax dx

( together with the fact that the modulus e

iaz

=e

ia ( x +iy )

=e

− ay

.e

iax

⇒e

iaz

=e

− ay

is bounded in the upper half plane y ≥ 0

cos x dx Q.1 I = ∫ 2 , a > b > 0 2 2 2 − ∞ ( x + a )( x + b ) ∞

Let f ( z ) =

(z

1

+ a )( z + b & C = [ − R, R ] ∪ C R 2

2

2

2

)

cR -R

R

f ( z ) has singularity at z = ± ai, ± bi out of which z = ai, bi are inside C & they are simple poles

Re s f ( z ) e = iz

z = ai

−a

e

iz

( z + ai ) ( z + b 2

−a

2

e ie = = − 2 2 2 2 2ai ( b − a ) 2a ( b − a )

)

z = ai

iz

e Re s f ( z )e = 2 2 z = bi ( z + a )( z + bi ) −b −b e ie = = 2 2 2 2 2bi ( a − b ) 2b( b − a ) iz

z = bi

ix

e dx iz ∴∫ 2 + f ( z ) e ∫ 2 2 2 − R ( x + a )( x + b ) C R

= 2πi ∑ Re s ( f ( z )e

2πi.i = 2 2 2 b −a

(

−b

)

iz

)

R

−a  e −b e   −  b  a   −a

π e e    = 2 − 2   a  a −b  b

Taking real parts, we get R

∫(

−R

cos x dx iz + Re f ( z ) e ∫ 2 2 2 2 x +a x +b CR

)(

)

π e e   = 2 2  −  a  a −b  b −b

−a

(1)

∴e =e & on C R iz

f ( z) =

−y

(z

≤1 ∀ y ≥ 0

1

+ a )( z + b 1 ≤ 2 2 2 2 ( R − a )( R − b ) 2

2

2

2

)

∴ Re ∫ e f ( z ) dz ≤

( ) e f z dz ∫

iz

CR

iz

CR

πR ≤ 2 2 2 2 R −a R −b =

π 3

(

)(

a  b  R 1 − 2 1 − 2   R  R  2

2

)

→ 0 as R → ∞

∴(1) yields ∞

∫(

−∞

cos x dx 2 2 2 2 x + a x +b

)(

)

e e    = 2 − 2   a  a −b  b

π

−b

−a

Jordan' s Lemma : Suppose that (i) a function f(z) is analytic at all points z in the upper half plane y ≥ 0 that are exterior to the circle z = R 0 ;



(ii ) C R : z = R e , 0 ≤ θ ≤ π , R > R0 ; (iii ) for all points z on C R , there is a positive constant M R such that f ( z ) ≤ M R , where lim M R = 0.

R→∞

Then, for every positive constant a, lim

R →∞



CR

f ( z) e

iaz

dz = 0

3

x sin ax Q .6 I = ∫ dx , a > 0 4 −∞ x + 4 ∞

3 iaz

z e Let f ( z ) = 4 z +4

z + 4 = 0 ⇒ z = −4 4

4

⇒ z = ( − 4) = ( 4( − 1) ) = ( 4e

1 4

1 4

)

1 ( π + 2 kπ ) i 4

⇒ zk = 2 e

, k = 0, 1,2,3

 π kπ  + 4 2

 i 

, k = 0,1, 2, 3

For k=0

z0 = 2 e π π = 2 ( cos 4 + i sin 4 ) = 1+ i iπ 4

For k=1 π π   + i 4 2

z1 = 2 e  π π   π π  = 2 cos +  + i sin  +   4 2   4 2 1   1 = 2− +i  2 2  = −1 + i

For k=2 π   +π  i 4 

z2 = 2 e π    = 2 cos π +  + i sin ( π + π 4 )  4    1   1 = 2 − −  = −1 − i 2 2 

For k=3  π 3π  + 4 2

 i 

z3 = 2 e 7π 7π   = 2 cos + i sin  4 4  =1 − i

simple poles are z 0 = 1 + i & z1 = −1 + i which are inside C. 3 iaz

z e Re s f ( z ) = Re s 4 z =z z =1+i z +4 3 iaz ze = z =1+i 3 4z 1 ia ( 1+i ) = e 4 0

3 iaz

ze Re s f ( z ) = 3 z=z 4z

z = −1+ i

1

1 ia ( −1+i ) = e 4 1 − ai .e = e 4 −a

1 − a ai − ai Re s f ( z ) + Re s f ( z ) = e [ e + e ] z= z z= z 4 1 −a = e ( cos a + i sin a + cos a − i sin a ) 4 1 −a = e cos a 2 0

1

Now we have R

3 iax

x e dx + f ( z ) dz ∫ x 4 +4 ∫ -R CR =2πi ∑Re s f ( z ) 1 −a =2πi e cos a 2 −a =πie cos a

Taking Imaginary parts, we have R

3 iax

xe Im ∫ 4 dx + Im ∫ f ( z ) dz x + 4 -R C R

= Im(2πi ∑ Re s f ( z ) ) −a

= π e cos a

Hence R

3

x sin ax dx + Im f ( z ) dz ∫ x4 + 4 ∫ -R CR =π e

−a

cos a

We have 3 iaz

ze f(z) = 4 z +4 3

z Let φ ( z ) = 4 z +4

On C R : z = R , we get 3

R φ ( z) ≤ 4 → 0 as R → ∞ R −4 Hence by Jordan' s Lemma lim

R →∞

φ ( z ) e dz = 0 ∫ iaz

CR

Thus, on taking lim it when R → ∞, we get ∞

3

x sin ax −a dx = π e cos a ∫ x4 + 4 −∞

3

x sin ax −a ⇒ ∫ dx = π e cos a 4 −∞ x + 4 ∞

SEC 78 • Advice 3: • Page No. 280: Q. Nos. : 1 - 6

Definite integrals involving sines and cosines : Consider the integral 2π

I = ∫ F ( cos θ , sin θ ) dθ 0



Let z = e , 0 ≤ θ ≤ 2π dz iθ ⇒ dz = i.e dθ ⇒ = dθ iz

Also z = 1 1 1  1 iθ − iθ  z +  = ( e + e ) = cos θ 2 z 2 1 1  1 iθ − iθ  z −  = ( e − e ) = sin θ 2i  z  2i



∴ I = ∫ F ( cos θ , sin θ ) dθ 0

= ∫ f ( z ) dz = 2πi ∑ Re s f ( z ) C : z =1

dθ Q1. Evaluate I = ∫ 0 5 + 4 sin θ 2π

∴ Let z = e



dz then I = ∫ 1 1  C : z =1  iz  5 + 4  z −   2i  z   dz =∫ 2 C 5iz + 2 z − 2

2 z + 5iz − 2 2 = 2 z + 4iz + iz − 2 = 2 z ( z + 2i ) + i ( z + 2i ) = ( z + 2i )( 2 z + i ) i  = 2( z + 2i )  z +  2  2

∴ I = ∫ f ( z ) dz , c

1 where f ( z ) = 2( z + 2i )( z + i 2 )

−i z = −2i, are simple poles of f(z) 2 -i but z = is the only pole which inside C. 2

1 Re s f ( z ) = z = −i 2 2( z + 2i )

z =−i / 2

1

1 = =  −i  3i 2 + 2i   2 

1 2π ∴ I = 2πi × = 3i 3

π

cos 2θ dθ Q.5 I = ∫ , a < 1 2 1 − 2 a cos θ + a 0

1 1 we have cosθ =  z + , 2 z 1 1 iθ sin θ =  z − , z = e 2i  z

∴1 − 2 a cosθ + a

2

1 1 2 = 1 − 2a  z +  + a 2 z a 1  = − ( z − a) z −  z a 

cos 2θ = 2 cos θ −1 2

2

1 1 = 2.  z +  −1 4 z

(

)

1 4 = 2 z +1 2z

π

∴I = ∫

cos 2θ . dθ 2

1 + a − 2 a cos θ 0

1 = 2



cos 2θ . dθ

∫ 1 + a 2 − 2a cosθ

( z + 1)dz

0

1 =− ∫ 4ai c

4

1  z ( z − a ) z −  a  2

z +1 Let f ( z ) = 1  2 z ( z − a)  z −  a  1 then z = a, are simple poles a & z = 0 is a pole of order 2 of f(z) 4

1 ∴ a <1⇒ >1 a ∴ z = 0 & z = a are the only poles which are inside C.

z +1 Re s f ( z ) = z=a 1 2 z z−   a  z=a 4 a +1 = 2 a (a − 1) 4

    4 d z +1  Re s f ( z ) = z= 0 dz   1   ( z − a) z −    a   z= 0  a +1 = a 2

Re s f ( z ) +Re s f ( z ) z =a

z =0

a +1 a +1 = + 2 a (a −1) a 4

2

a +1 +a −1 = 2 a (a −1) 4

4

3

a = 2 a −1

3

1 a ∴I = − × 2πi × 2 4ai a −1 2 aπ = 2 1− a

Related Documents


More Documents from ""