15015135_kuis 3.docx

  • Uploaded by: Angga Aditya Wijaya
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 15015135_kuis 3.docx as PDF for free.

More details

  • Words: 444
  • Pages: 4
SI - 3213 Dinamika Struktur dan Rekayasa Gempa Kuis 3 Dosen: Prof. Ir. R. Bambang Boediono, M.E., Ph.D.

Disusun oleh: Angga Aditya Wijaya

15015135

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN INSTITUT TEKNOLOGI BANDUNG 2019

KUIS 3 SEMESTER I – 2018/2019 Prodi Teknik Sipil – FTSL – Institut Teknologi Bandung Nama

: Angga Aditya Wijaya

NIM

: 15015135

Mata Kuliah

: SI-3213 Dinamika Struktur dan Rekayasa Gempa

Dosen

: Prof. Dr. Ir. Bambang Budiono, M.E.

Due Date

: 18 Februari 2019

Diket : m

: 20 ton

Kolom : 400x400 mm2 E

: 30x106 kN/m2

ξ

: 5%

ß

:5

Po

: 20 kN

Ditanya : a.

Amplitudo max

b.

Berapa Fsmax

c.

Hitung respon struktur u(t), v(t), a(t) saat t=10 s

d.

Hitung gaya redaman, gaya pegas dan gaya inersia struktur saat t=10 s

Jawab : a. 𝑃(𝑡) = 𝑃𝑜 sin⁡(𝜔 ̅𝑡) 𝐼= 𝑘=

1 1 𝑏ℎ3 = × 0,4 × 0,43 = 2,13 × 10−3 ⁡𝑚4 12 12

24𝐸𝐼 24 × 30 × 106 × 2,13 × 10−3 𝑘𝑁 = = 15780,39 3 3 ℎ 4,6 𝑚

𝑘 15780,39 𝜔=√ =√ = 28,09⁡𝑟𝑎𝑑/𝑠 𝑚 20 𝛽=

𝜔 ̅ =5 𝜔

𝜔 ̅ = 5𝜔 = 5 × 28,09 = 140,45 𝜌(𝐴𝑚𝑝𝑙𝑖𝑢𝑑𝑜⁡𝑚𝑎𝑥) = 𝜌=

𝑟𝑎𝑑 𝑠

1 𝑃0 [(1 − 𝛽 2 )2 + (2𝜉𝛽)2 ]−2 𝑘

1 20 [(1 − 52 )2 + (2 × 0,05 × 5)2 ]−2 = 5,28 × 10−5 ⁡𝑚 15780,39

b. 𝐹𝑠𝑚𝑎𝑥 = 𝑘. 𝜌 = 15780,39 × 5,28 × 10−5 = 0,83⁡𝑘𝑁 c. 𝑢(𝑡) = 𝜌 sin(𝜔 ̅𝑡 − 𝜃) 2𝜉𝛽 2 × 0.05 × 5 𝜃 = tan−1 ( ) = tan−1 ( ) = 178,81𝑜 = 3,12⁡⁡𝑟𝑎𝑑 2 1−𝛽 1 − 52 𝑢(10) = 5,28 × 10−5 ⁡sin(140,45 × 10 − 3,12) = 1,07 × 10−5 ⁡𝑚 𝑢̇ (𝑡) = 𝜔 ̅𝜌 cos(𝜔 ̅𝑡 − 𝜃) 𝑢̇ (10) = 140,45 × 5,28 × 10−5 cos(140,45 × 10 − 3,12) = 7,26 × 10−3

𝑚 𝑠

𝑢̈ (𝑡) = −𝜔 ̅ 2 𝜌 sin(𝜔 ̅𝑡 − 𝜃) 𝑢̈ (10) = −140,452 × 5,28 × 10−5 sin(140,45 × 10 − 3,12) = −0,21 d. 𝑐 = 𝜉𝑐𝑐 = 2𝜉𝑚𝜔 = 2 × 0,05 × 20 × 28,09 = 56,18 𝐹𝑠 (𝑡) = 𝑘𝑢(𝑡) 𝐹𝑠 (10) = 15780,39 × 1,07 × 10−5 = 0,17⁡𝑘𝑁 𝐹𝐷 (𝑡) = 𝑐𝑢̇ (𝑡) 𝐹𝐷 (10) = 56,18 × 7,26 × 10−3 = 0,41⁡𝑘𝑁 𝐹𝐼 (𝑡) = 𝑚𝑢̈ (𝑡) 𝐹𝐼 (10) = 20 × −0,21 = −4,21⁡𝑘𝑁 Pengecekan 𝑃(10) = 𝑃𝑜 sin(𝜔 ̅𝑡) = 𝐹𝑠 (10) + 𝐹𝐷 (10) + 𝐹𝐼 (10) 20 × sin(140,45 × 10) = 0,17 + 0,41 − 4,21 −3,63⁡𝑘𝑁 = −3,63⁡𝑘𝑁⁡(𝑂𝐾)

𝑡𝑜𝑛 𝑠

𝑚 𝑠2

More Documents from "Angga Aditya Wijaya"