13. The Optics Of Particles

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 13. The Optics Of Particles as PDF for free.

More details

  • Words: 8,670
  • Pages: 11
SERIES  ARTICLE

Snippets of Physics 13. The Optics of Particles T Padmanabhan

T Padmanabhan works at IUCAA, Pune and is interested in all areas of theoretical physics, especially those which have something to do with gravity.

T h e p ro b a b ility a m p litu d e fo r a p a rtic le to p ro p a g a te fro m e v e n t to e v e n t in sp a c e tim e sh o w s so m e n ic e sim ila ritie s w ith th e c o rre sp o n d in g p r o p a g a to r fo r th e e le c tro m a g n e tic w a v e a m p litu d e d isc u sse d in th e la st in sta llm e n t. In fa c t, th is a n a lo g y p ro v id e s a n in te r e stin g in sig h t in to th e tr a n sitio n fr o m q u a n tu m ¯ e ld th e o r y to q u a n tu m m e c h a n ic s! In cla ssica l m ech a n ics, th e m o tio n o f a p a rticle w ith p o sitio n x (t) u n d er th e a ctio n o f a (tim e in d ep en d en t) p o ten tia l V (x ) is d eterm in ed th ro u g h th e N ew to n 's law o f m o tio n m xÄ = ¡ r V . G iv en th e in itia l p o sitio n x (0 ) a n d v elo city v (0 ) a t t = 0 w e ca n in teg ra te th is eq u a tio n to d eterm in e th e tra jecto ry. A ll o th er p h y sica l o b serv a b les in cla ssica l m ech a n ics ca n b e o b ta in ed fro m th e tra jecto ry x (t). W h a t is th e co rresp o n d in g situ a tio n in q u a n tu m m ech a n ics? H ere th e w av efu n ctio n o f th e p a rticle à (t;x ) co n ta in s co m p lete in fo rm a tio n a b o u t th e sta te o f th e sy stem a n d sa tis¯ es th e S ch rÄo d in g er eq u a tio n @à ~2 2 i~ r à + V à ´ H à : = ¡ @t 2m

Keywords Optics, waves.

. 8

(1 )

G iv en th e w av efu n ctio n à (0 ;x ) a t t = 0 w e ca n in teg ra te th is eq u a tio n a n d o b ta in th e w av efu n ctio n a t a n y la ter tim e. B u t, u n lik e in th e ca se o f cla ssica l m ech a n ics, th ere is a n ice w ay o f sep a ra tin g th e d y n a m ica l ev o lu tio n fro m th e in itia l co n d itio n in th e ca se o f q u a n tu m m ech a n ics w h ich w e sh a ll ¯ rst d escrib e. T o k eep th e d iscu ssio n so m ew h a t g en era l w e w ill a ssu m e th a t th e

RESONANCE  January 2009

SERIES  ARTICLE

sp a ce h a s D d im en sio n s w ith th e u su a l ch o ices b ein g D = 1 ;2 ;3 . W e k n ow th a t w h en th e p o ten tia l is in d ep en d en t o f tim e, eq u a tio n (1 ) h a s en erg y eig en sta tes w h ich sa tisfy th e eig en va lu e eq u a tio n H Á n (x ) = E n Á n (x ). U sin g th ese eig en fu n ctio n s w e ca n ex p a n d th e in itia l w av efu n ctio n à (0 ;x ) in term s o f th e en erg y eig en fu n ctio n s a s Z X à (0 ;x ) = c n Á n (x ); c n = d y à (0 ;y )Á ¤n (y ); (2 ) n

w h ere th e ex p ressio n fo r c n fo llow s fro m th e o rth o n o rm a lity o f th e en erg y eig en fu n ctio n s a n d th e sp a tia l in teg ra tio n s a re ov er th e D -d im en sio n a l sp a ce. S in ce th e en erg y eig en fu n ctio n ev o lv es in tim e w ith a p h a se fa cto r ex p (¡ iE n t= ~), it fo llow s th a t th e w av efu n ctio n a t tim e t is g iv en b y X Ã (t;x ) = c n Á n (x )e ¡ iE n t= ~ ; (3 ) n

w h ich , in p rin cip le, so lv es th e p ro b lem . A ctu a lly, w e ca n d o b etter b y ex p ressin g th e c n s in (3 ) in term s o f à (0 ;x ) u sin g th e seco n d rela tio n in (2). T h is g iv es Z X à (t;x ) = d y à (0 ;y ) Á n (x )Á ¤n (y )e ¡ iE n t= ~ ´

Z

n

d y K (t;x ;0;y )Ã (0 ;y );

(4 )

w h ere w e h av e d e¯ n ed th e fu n ctio n { u su a lly ca lled th e p ro p a g a to r o r k ern el { b y X K (t;x ;0 ;y ) = Á ¤n (y )Á n (x )e ¡iE n t= ~ : (5 ) n

It is o b v io u s th a t th e p ro p a g a to r K (t;x ;0 ;y ) ca rries co m p lete in fo rm a tio n a b o u t th e d y n a m ica l ev o lu tio n o f th e sy stem a n d ca n b e co m p u ted o n ce th e H a m ilto n ia n

RESONANCE  January 2009

It is obvious that the propagator K(t,x;0,y) carries complete information about the dynamical evolution of the system.

9

SERIES  ARTICLE

Curiously enough, such a separation has no direct analog in the case of classical mechanics.

H is k n ow n , in term s o f its eig en fu n ctio n s a n d th e eig en va lu es. W h a t is m o re, eq u a tio n (4 ) n icely sep a ra tes th e d y n a m ics, en co d ed in K (t;x ;0 ;y ), fro m th e in itia l co n d itio n en co d ed in à (0 ;y ). C u rio u sly en o u g h , su ch a sep a ra tio n h a s n o d irect a n a lo g in th e ca se o f cla ssica l m ech a n ics. S in ce à (0 ;y ) g iv es th e a m p litu d e to ¯ n d th e p a rticle a ro u n d y a t t = 0 , it fo llow s th a t K (t;x ;0 ;y ) ca n b e th o u g h t o f a s th e p ro b a b ility a m p litu d e fo r a q u a n tu m p a rticle to p ro p a g a te fro m th e ev en t (0 ;y ) to th e ev en t (t;x ). O f co u rse, sin ce th e p o ten tia l is in d ep en d en t o f tim e, w e ca n u se tim e tra n sla tio n in va ria n ce to w rite a n ex p ressio n fo r K (t2 ;x 2 ;t1 ;x 1 ) b y rep la cin g E n t= ~ in (5 ) b y (E n = ~)(t2 ¡ t1 ). F o r th is in terp reta tio n to b e va lid th e p ro p a g a to r m u st sa tisfy th e in teg ra l co n d itio n : Z K (t3 ;x 3 ;t1 ;x 1 ) = d x 2 K (t3 ;x 3 ;t2 ;x 2 )K (t2 ;x 2 ;t1 ;x 1 ): (6 )

U sin g th e d e¯ n itio n in (5 ) a n d th e o rth o n o rm a lity o f eig en fu n ctio n s, y o u ca n p rov e th a t th is is in d eed tru e. N o te th a t th is is a n o n triv ia l co n d itio n : A t th e in term ed ia te ev en t w e in teg ra te o n ly ov er x 2 leav in g t2 a lo n e; n ev erth eless, th e ¯ n a l resu lt { a n d th e left h a n d sid e { is in d ep en d en t o f t2 . S o th e p ro p a g a to r a ctu a lly p ro p a g a tes th e p a rticle fro m ev en t to ev en t. Note that equation (6) is a nontrivial condition: At the intermediate event we integrate only over x2 leaving t2 alone; nevertheless, the final result – and the left hand side – is independent of t2.

10

S in ce Á n s a re en erg y eig en fu n ctio n s, it is a lso stra ig h tfo rw a rd to v erify th a t th e p ro p a g a to r sa tis¯ es th e S ch rÄo d in g er eq u a tio n µ ¶ @ i~ ¡ H K (t;x ;0 ;y ) = 0 ; (7 ) @t w ith th e sp ecia l in itia l co n d itio n lim K (t;x ;0 ;y ) = ± D (x ¡ y ): t! 0

(8 )

T h is co n d itio n ca n a lso b e o b ta in ed ea sily fro m (4 ) b y ta k in g th e lim it o f t ! 0 . RESONANCE  January 2009

SERIES  ARTICLE

A fter th is p rea m b le a b o u t th e p ro p a g a to r, w e w ill tu rn to th e k ey to p ic o f th is in sta llm en t. T o in tro d u ce it, let u s w o rk o u t th e p ro p a g a to r for a free p a rticle (V = 0 ) u sin g th e ex p ressio n in (5 ). In th e ca se o f a free p a rticle th e en erg y eig en fu n ctio n s a n d eig en va lu es ca n b e ta k en to b e la b elled b y a w av en u m b er p in stea d o f a d iscrete in d ex n w ith Á p (x ) =

1 (2 ¼ )D

=2

ex p i(p ¢ x );

E

p

=

~2 p 2 : 2m

(9 )

T h e n o rm a liza tio n o f Á p (x ) is so m ew h a t a rb itra ry b u t w e u se th e co n v en tio n th a t m o m en tu m sp a ce in teg ra ls co m e w ith a m ea su re d p so th at th e o rth o n o rm a lity co n d itio n rea d s a s Z d p Á p (x )Á ¤p (y ) = ± (x ¡ y ): (1 0 ) T h e p ro p a g a to r is n ow g iv en b y a n ex p ressio n sim ila r to (5 ) b u t w ith a n in teg ra l ov er p ra th er th a n a su m ov er th e d iscrete in d ex n . H en ce w e g et Z d p ip ¢(x ¡y )= ~ ¡ip 2 ~t= 2 m K (t;x ;0 ;y ) = e e (2 ¼ )D · ¸ ³ m ´D = 2 im (x ¡ y )2 = ex p (;1 1 ) ~ 2 ¼ i~t 2t w h ere D is th e d im en sio n o f sp a ce (1 , 2 o r 3 ) in w h ich th e p a rticle is m ov in g . (T h e in teg ra l is ju st th e D d im en sio n a l F o u rier tra n sfo rm o f a G a u ssia n w h ich sep a ra tes o u t in ea ch o f th e d im en sio n s.) W e ca n v erify d irectly th a t K (t;x ;0 ;y ) sa tis¯ es (7 ) a n d (8 ). It is a lso o b v io u s th a t it sa tis¯ es th e \ n o rm a liza tio n co n d itio n " Z d x K (t;x ;0 ;y ) = 1 : (1 2 ) U su a lly in q u a n tu m m ech a n ics w e n o rm a lize th e p ro b a b ilities a n d n o t th e p ro b a b ility a m p litu d es. B u t th is is a n ex cep tio n to th e ru le in w h ich p ro b a b ility a m p litu d e

RESONANCE  January 2009

Equation (12) is an exception to the rule in which probability amplitude for propagation from event to event comes out normalized to unity.

11

SERIES  ARTICLE

fo r p ro p a g a tio n fro m ev en t to ev en t co m es o u t n o rm a lized to u n ity. T h ere is a co n v en tio n a l in terp reta tio n o f th e p h a se o f th e p ro p a g a to r in (1 1 ) w h ich w e w ill n ow d escrib e. T o d o th is, let u s co n sid er th e a ctio n fo r th e free p a rticle in cla ssica l m ech a n ics g iv en b y Zt m A (t;x ;0 ;y ) = x j2 ; d t j_ (1 3 ) 2 0 w h ich is d e¯ n ed fo r a n y tra jectory x (t) th a t co n n ects th e tw o en d p o in ts. In p a rticu la r, w e ca n d eterm in e th e cla ssica l tra jecto ry x c (t) fro m ex trem isin g th e a ctio n a n d eva lu a te th e cla ssica l va lu e o f th e a ctio n A c (t;x ;0 ;y ) fo r th is p a rticu la r cla ssica l tra jecto ry. F o r th e free p a rticle, th is is triv ia l to eva lu a te a n d is g iv en b y A c (t;x ;0 ;y ) =

m (x ¡ y )2 ; t 2

(1 4 )

so th a t th e p ro p a g a to r in (1 1 ) ca n b e ex p ressed in th e fo rm · ¸ i K (t;x ;0 ;y ) = N (t) ex p A c (t;x ;0 ;y ) : (1 5 ) ~ W e see th a t th e p h a se o f th e p ro p a g a to r ca n b e in terp reted a s ju st th e cla ssica l va lu e o f th e a ctio n d iv id ed b y ~.

We see that the phase of the propagator can be interpreted as just the classical value of the action divided by ~).

12

T h e situ a tio n is a ctu a lly b etter th a n th is. L et u s co n sid er, in stea d o f th e cla ssica l p a th , a n y a rb itra ry p a th co n n ectin g th e tw o ev en ts (la b elled 1 a n d 2 ) w e a re in terested in . S in ce o n e ca n n o t m ea su re p o sitio n a n d v elo city o f a p a rticle sim u lta n eo u sly in q u a n tu m m ech a n ics, it d o es n o t m a k e sen se to say th a t th e p a rticle w en t fro m o n e p o in t to a n o th er a lo n g a p a rticu la r tra jecto ry. T h e b est w e ca n say is th a t th ere is so m e a m p litu d e P (2 ;1 jx (t)) ´ P (t2 ;x 2 ;t1 ;x 1 jx (t)) fo r th e p a rticle to ch o o se a p a rticu la r p a th x (t). W e n ow p o stu la te, fo llo w in g D ira c a n d F ey n m a n , th a t th is a m p litu d e is g iv en b y

RESONANCE  January 2009

SERIES  ARTICLE

P (2 ;1 jx (t)) = ex p (iA [2 ;1 jx (t)]= ~). T h en th e to ta l a m p litu d e fo r p ro p a g a tio n fro m ev en t 1 to ev en t 2 (w h ich , o f co u rse, is o u r p ro p a g a to r) m u st b e g iv en b y X X K (2 ;1 ) = P (2 ;1 jx (t)) = ex p (iA [2 ;1 jx (t)]= ~); p a th s

x (t)

(1 6 )

w h ere th e su m m a tio n sy m b o l in d ica tes th a t w e h av e to su m ov er a ll p a th s x (t) co n n ectin g th e tw o ev en ts. In g en era l, it is n o t ea sy to d e¯ n e a n d eva lu a te th is su m b u t so m eth in g in terestin g h a p p en s if th e a ctio n co n ta in s n o term s w h ich a re m o re th a n q u a d ra tic in v elo city o r p o sitio n . In th ese ca ses, w e b eg in b y w ritin g a n y a rb itra ry p a th { ov er w h ich w e h av e to su m { in term s o f th e cla ssica l p a th x c (t) p lu s a d ev ia tio n fro m it: th a t is, w e w rite x (t) = x c (t) + r(t). S u m m in g ov er a ll x (t) is th e sa m e a s su m m in g ov er a ll r (t) b u t th e `b o u n d a ry co n d itio n s' o n r (t) a re ea sier to h a n d le. S in ce b o th th e cla ssica l p a th x c (t) a n d a n y a rb itra ry p a th x (t) co n n ect th e sa m e en d p o in ts, th e r(t) m u st va n ish a t th e en d p o in ts. F u rth er, if th e a ctio n h a s o n ly u p to q u a d ra tic term s in x (t), th en it sp lits u p a s th e su m : A [x (t)] = A [x c (t) + r(t)] = A [x c (t)] + A lin [x c (t);r (t)] + A

q u a d [r(t)];

In general, it is not easy to define and evaluate the sum in (16) but something interesting happens if the action contains no terms which are more than quadratic in velocity or position.

(1 7 )

w h ere A lin is lin ea r in x (t) a n d r(t) w h ile A q u a d is q u a d ra tic in r(t). (T h is is essen tially p a ra p h ra sin g th e fo rm u la fo r (a + b)2 !). B u t reca ll th a t th e cla ssica l p a th is a n ex trem u m o f th e a ctio n ; so th e ch a n g e in a ctio n w h en th e p a th ch a n g es b y a d ev ia tio n r(t) h a s to b e to q u a d ra tic o rd er in r . T h erefo re, A lin = 0 a n d th e su m ov er p a th s in (1 6 ) ca n b e w ritten a s: X K (2 ;1 ) = ex p (iA [2 ;1 jx (t)]= ~) x (t)

=

ex p (iA [2 ;1 jx c (t)]= ~)

RESONANCE  January 2009

X

ex p (iA

q u a d [r(t)]= ~):(1 8 )

r(t)

13

SERIES  ARTICLE

The sum over r(t) in (18) (which we haven’t even defined properly!) can only be a function of t2,t1. We get the neat result that for all actions which have only up to quadratic terms in their variables, the propagator has the form in (15).

1

See equation (7) in Resonance, Vol.13, p.1100, December 2008.

T h e cru cia l p o in t is th a t th e su m ov er r (t) is d o n e w ith th e co n d itio n r(t2 ) = r (t1 ) = 0 a n d h en ce it d o es n o t d ep en d o n x 1 ;x 2 . S o th e su m ov er r (t) in (1 8 ) (w h ich w e h av en 't ev en d e¯ n ed p ro p erly !) ca n o n ly b e a fu n ctio n o f t2 ;t1 . W e g et th e n ea t resu lt th a t fo r a ll a ctio n s w h ich h av e o n ly u p to q u a d ra tic term s in th eir va ria b les, th e p ro p a g a to r h a s th e fo rm in (1 5 ). (In fa ct, o n e ca n a lso d eterm in e N (t2 ;t1 ) u sin g th e co n d itio n (6 ) b u t w e w o n 't g o in to th a t.). F o r a ll th ese ca ses, o f w h ich th e free p a rticle is a sp ecia l ca se, th e p h a se o f th e p ro p a g a to r is ju st th e cla ssica l a ctio n . T h is is a ll n ice b u t in n o n -rela tiv istic m ech a n ics th e a ctio n fu n ctio n a l in (1 3 ) h a s n o sim p le g eo m etrica l in terp reta tio n . W e w ill n ow p rov id e a n a ltern a tiv e p ersp ectiv e o n th e p h a se o f th e p ro p a g a to r w h ich w ill lea d to a g eo m etric in sig h t. T h e m o st rem a rka b le fea tu re a b o u t th e p ro p a g a to r in (1 1 ), fro m th is a ltern a tiv e p ersp ectiv e, is th a t w e h av e a lrea d y seen th is ex p ressio n in th e la st in sta llm en t in co n n ectio n w ith th e p ro p a g a tio n o f electro m a g n etic w a v es a lo n g th e z -d irectio n ! T h ere w e h a d th e ex p ressio n 1 fo r a p ro p a g a to r w h ich is rep ro d u ced h ere fo r y o u r co n v en ien ce: G (z ¡ z 0;x ? ¡ x 0? ) = ³ ! ´ 1 ex p 2 ¼ ic jz ¡ z 0j

" # i! (x ? ¡ x 0? )2 : 2 c (z ¡ z 0)

(1 9 )

C o m p a rin g (1 9 ) w ith (1 1 ) w e see th e fo llow in g co rresp o n d en ce. T h e (z ¡ z 0)= c, w h ich is th e tim e o f lig h t trav el a lo n g th e z -a x is (a lo n g w h ich th e w av e is p ro p a g a tin g ) is a n a lo g o u s to tim e t in q u a n tu m m ech a n ics. T h e tw o tra n sv erse sp a tia l d irectio n s in th e ca se o f electro m a g n etic w av e p ro p a g a tio n a re a n a lo g o u s to th e sp a tia l co o rd in a tes in q u a n tu m m ech a n ics in 2 -d im en sio n s; so w e ca n set D = 2 in (1 1 ). T h e freq u en cy sh o u ld g et m a p p ed to th e rela tio n ~! = m c 2 w h ich is essen tia lly

14

RESONANCE  January 2009

SERIES  ARTICLE

th e freq u en cy a sso cia ted w ith th e C o m p to n w av elen g th o f th e p a rticle. T h is w ill m a k e th e p ro p a g a to rs id en tica l! O b v io u sly, th is d eserv es fu rth er p ro b in g esp ecia lly sin ce th e co rresp o n d en ce b rin g s in a c fa cto r w h en w e th o u g h t w e a re d o in g n o n rela tiv istic q u a n tu m m ech a n ics.

Obviously, this

In th e ca se o f th e p ro p a g a tio n o f electro m a g n etic w av e a m p litu d e, w e w ere p ro p a g a tin g it a lo n g th e p o sitiv e z -d irectio n w ith x a n d y a ctin g a s tw o tra n sv erse d irectio n s. In th e ca se o f q u an tu m m ech a n ics, w e a re p ro p a g a tin g th e a m p litu d e fo r a p a rticle a lo n g th e p o sitiv e t-d irectio n w ith a ll th e sp a tia l co o rd in a tes a ctin g a s `tra n sv erse d irectio n s'. In th e la n g u a g e o f p a ra x ia l o p tics, th e sp ecia l a x is is a lo n g th e tim e d irectio n in q u a n tu m m ech a n ics.

brings in a c factor

deserves further probing especially since the correspondence when we thought we are doing nonrelativistic quantum mechanics.

B u t w e k n ow th a t p a ra x ia l op tics is ju st a n a p p rox im a tio n to a m o re ex a ct p ro p a g a tio n in term s o f th e w av e eq u a tio n . In th e w av e eq u a tio n fo r th e electro m a g n etic w av e, th e th ree co o rd in ates (x ;y ;z ) a p p ea r q u ite sy m m etrica lly a n d to o b ta in p a ra x ia l lim it, w e ch o o se o n e a x is (z -a x is) a s sp ecia l a n d p ro p a g a te th e a m p litu d e a lo n g th e p o sitiv e d irectio n . T h is is w h y th e p ro p a g a to r in (1 9 ) h a s th e x ;y co o rd in a tes a p p ea rin g d i® eren tly co m p a red to th e z -a x is. D o in g a b it o f rev erse en g in eerin g w e ca n a sk th e q u estio n : If th e q u a n tu m m ech a n ica l p ro p a g a to r is so m e k in d o f p a ra x ia l o p tics lim it o f a m o re ex a ct th eo ry, w h a t w ill it b e? A n o b v io u s w ay to ex p lo re th e situ a tio n is to resto re th e sy m m etry b etw een z a n d x ;y in o p tics a n d , sim ila rly, resto re th e sy m m etry b etw een t a n d x in q u a n tu m m ech a n ics. W e ca n d o th is if w e reca ll th e in terp reta tio n o f th e p h a se a s d u e to th e p a th d i® eren ce in th e ca se o f electro m a g n etic w av e. T h e releva n t eq u a tio n 2 is a g a in rep ro d u ced b elow : ·q ¸ ! 2 0 0 2 0 k¢ s = (x ? ¡ x ? ) + (z ¡ z ) ¡ (z ¡ z ) c

RESONANCE  January 2009

2 See equation (9) in Resonance, Vol.13, p.1103, December 2008.

15

SERIES  ARTICLE

»= ! c

" # 1 (x ? ¡ x 0? )2 : 2 (z ¡ z 0)

(2 0 )

W e u se th e fa ct th a t a p a th d i® eren ce ¢ s b etw een tw o p o in ts in sp a ce w ill in tro d u ce a p h a se d i® eren ce o f k ¢ s in a p ro p a g a tin g w av e. T h e p a ra x ia l o p tics resu lts w h en th e tra n sv erse d isp la cem en ts a re sm a ll co m p a red to th e lo n g itu d in a l d ista n ce. T a k in g a cu e fro m th is, let u s co n stru ct th e q u a n tity o ¤ l(t;x ;0 ;y ) ¡ ct m c n£ 2 2 2 1=2 ´ c t ¡ (x ¡ y ) ¡ ct ; ¸ ~ (2 1 ) w h ere l(t;x ;0 ;y ) is th e sp ecia l rela tiv istic sp a cetim e in terva l b etw een th e tw o ev en ts. W e a re su b tra ctin g fro m it th e `p a ra x ia l d ista n ce' ct a lo n g th e tim e d irectio n a n d d iv id in g b y ¸ ´ (~= m c) w h ich is th e C o m p to n w av elen g th o f th e p a rticle. T h is is ex a ctly th e co n stru ctio n su g g ested b y th e co rresp o n d en ce b etw een (1 9 ) a n d (1 1 ), d iscu ssed p rev io u sly, ex cep t fo r u sin g th e sp ecia l rela tiv istic lin e in terva l, w ith a m in u s sig n b etw een sp a ce a n d tim e. T h e p a ra x ia l lim it n ow a rises a s th e n o n rela tiv istic lim it o f th is ex p ressio n in (2 1 ) w h en c ! 1 ; th is is g iv en b y

We are subtracting from l(t, x; 0, y) the ‘paraxial distance’ ct along the time direction and dividing by

 (~ / mc) which is the Compton wavelength of the particle.

16

l ¡ ct » m (x ¡ y )2 ; = ¡ ¸ ~t 2

(2 2 )

w h ich is p recisely th e p h a se o f th e p ro p a g a to r in (1 1 ) ex cep t fo r a sig n . S o th e p ro p a g a to r ca n b e th o u g h t o f a s th e n o n rela tiv istic lim it o f th e fu n ctio n µ · ¸¶ l(t;x ;0 ;y ) i(m c 2 = ~)t K (t;x ;0 ;y ) = N (t)e : ex p ¡ i ¸ (2 3 ) S o th e p h a se o f th e p ro p a g a to r is ju st th e p ro p er d ista n ce b etw een th e tw o ev en ts, in u n its o f th e C o m p to n

RESONANCE  January 2009

SERIES  ARTICLE

w av elen g th , ju st a s th e p h a se in th e ca se o f th e electro m a g n etic w av e p ro p a g a to r is th e p a th len g th in u n its o f th e w av elen g th . (T h e ex tra fa cto r (m c 2 = ~)t d o es n o t co n trib u te to th e p ro p a g a tio n in teg ra l in (4 ) a n d g o es fo r a rid e; w e ca n ig n o re it b u t if y o u w a n t y o u ca n a lso th in k o f it a s a risin g fro m th e en erg y b ein g sh ifted b y m c 2 .). W e ca n th in k o f th e p a th d i® eren ce b etw een a stra ig h t p a th a lo n g th e tim e d irectio n (w ith x = y ) a n d a n o th er sp eci¯ ed p a th a s co n trib u tin g a p h a se l= ¸ to th e p ro p a g a to r. T h is g eo m etric in terp reta tio n is lo st fo r th e p h a se in th e p a ra x ia l lim it (in th e ca se o f electro m a g n etic th eo ry ) a n d in th e n o n rela tiv istic lim it (in th e ca se o f a p a rticle).

This geometric interpretation is lost for the phase in the paraxial limit (in the case of electromagnetic theory) and in the nonrelativistic limit (in the case of a particle).

T h is ex ten sio n su g g ests th a t th e p h a se in th e rela tiv istic ca se ca n b e rela ted to th e co rresp o n d in g a ctio n . T h e a ctio n fo r a free p a rticle in sp ecia l rela tiv ity is g iv en b y ¶1 = 2 Zt µ v2 2 A R (t;x ;0 ;y ) = ¡ m c : dt 1 ¡ 2 (2 4 ) c 0 O n ce a g a in , ev a lu a tin g th is fo r a rela tiv istic cla ssica l tra jecto ry w e g et · ¸1 = 2 (x ¡ y )2 c 2 A R (t;x ;0 ;y ) = ¡ m c t 1 ¡ c 2 t2 £ ¤1 = 2 ; (2 5 ) = ¡ m c c 2 t2 ¡ (x ¡ y )2 w h ich is essen tia lly th e in terva l b etw een th e tw o ev en ts in th e sp a cetim e. T h is su g g ests ex p ressin g th e p ro p a g a to r fo r th e rela tiv istic free p a rticle in th e fo rm µ c ¶ iA R im c 2 t K (t;x ;0 ;y ) = N (t) ex p : + (2 6 ) ~ ~ T h is resu lt is tru e b u t o n ly in a n a p p rox im a te sen se to th e lea d in g o rd er; th e a ctu a l p ro p a g a to r fo r a p a rticle in rela tiv istic q u a n tu m th eo ry tu rn s o u t to b e m o re co m p lica ted . T h is is b eca u se th e a ctio n in (2 4 ) fo r th e rela tiv istic p a rticle is n o t q u a d ra tic a n d o u r p rev io u s resu lt

RESONANCE  January 2009

17

SERIES  ARTICLE

It is the second interpretation which makes contact with optics so clear and is lacking when we do non-relativistic quantum mechanics.

Address for Correspondence T Padmanabhan IUCAA, Post Bag 4 Pune University Campus Ganeshkhind Pune 411 007, India. Email: [email protected] [email protected]

18

in (1 8 ) d o es n o t h o ld . B u t, to th e lea d in g o rd er, a ll o f it h a n g s to g eth er v ery n icely. T h e p h a se o f th e p ro p a g a to r is in d eed th e va lu e o f th e cla ssica l a ctio n d iv id ed b y ~ a n d it is a lso g iv en b y th e ra tio o f th e sp a cetim e in terva l b etw een th e ev en ts a n d th e C o m p to n w av elen g th . It is th e seco n d in terp reta tio n w h ich m a k es co n ta ct w ith o p tics so clea r a n d is la ck in g w h en w e d o n o n -rela tiv istic q u a n tu m m ech a n ics. T h ere is a ctu a lly a va lid m a th em a tica l rea so n fo r th is to h a p p en w h ich ca n b e d escrib ed q u a lita tiv ely a s fo llow s: T h e S ch rÄo d in g er eq u a tio n d escrib in g th e n o n -rela tiv istic p a rticle in v o lv es ¯ rst d eriva tive w ith resp ect to tim e b u t seco n d d eriva tiv e w ith resp ect to sp a tia l co o rd in a tes. T h is w o rk s in n o n -rela tiv istic m ech a n ics in w h ich tim e is sp ecia l a n d a b so lu te. In co n tra st, in rela tiv istic th eo ries, w e trea t tim e a n d sp a ce a t a m o re sy m m etric fo o tin g a n d u se a w av e eq u a tio n in w h ich seco n d d eriva tiv es w ith resp ect to tim e a lso a p p ea r. T h e so lu tio n s to su ch a n eq u a tio n w ith a llow p ro p a g a tio n o f a m p litu d es b o th fo rw a rd a n d b a ck w a rd in tim e co o rd in a te ju st a s it a llo w s p ro p a g a tio n b o th fo rw a rd s a n d b a ck w a rd s in sp a tia l co o rd in a tes. W hen on e takes the n on -relativistic lim it of the ¯ eld theory, w e select ou t the m odes w hich on ly propagate forw ard in tim e. T h is is ex a ctly in a n a lo g y w ith p a ra x ia l o p tics w e stu d ied in th e la st in sta llm en t. T h e b a sic eq u a tio n fo r electro m a g n etic w av e w ill a llow p ro p a g a tio n in b o th p o sitiv e z -d irectio n a s w ell a s n eg a tiv e z -d irectio n . B u t, w h en w e co n sid er a sp eci¯ c co n tex t o f p a ra x ia l o p tics (fo r ex a m p le, a b ea m o f lig h t h ittin g a co u p le o f slits in a screen a n d fo rm in g a n in terferen ce p a ttern o r lig h t p ro p a g a tin g th ro u g h a len s a n d g ettin g fo cu sed ), w e select o u t th e m o d es w h ich a re p ro p a g a tin g in th e p o sitiv e z -d irectio n . It is th erefo re n o w o n d er th a t th e p ro p a g a to r in n o n -rela tiv istic q u a n tu m m ech a n ics is m a th em a tica lly id en tica l to th a t in p a ra x ia l o p tics!

RESONANCE  January 2009

Related Documents

Optics
November 2019 26
Optics
July 2020 10
Optics
July 2020 12
Optics
May 2020 13
Optics And The Eye
May 2020 7