DATE__________________ NOTES Section 1.1 – Properties of Real Numbers DEFINE AND GIVE AN EXAMPLE: Complex #’s – Real #’s – Rational #’s Irrational #’s Natural #’s Whole #’s Integers –
Direction: Draw a Venn diagram that shows the relationships among these sets of #’s. C= Complex, R= Reals, Q= Rationals, I=irrationals, Z= Integers, W=Wholes, and N= Naturals
Ex1. Name the sets of numbers to which each number belongs. a. 16
b. –185
EX2. Compare each number then graph on a number line: pi, ⅔, 3/2, 1.7, √5
c. 20
d. –7 8
e.
0.45
Real Numbers Properties PROPERTY ADDITION MULTIPLICATION ab = ba Commutative a + b = b + a (a + b) + c = a + (b + c) (ab) c = a (bc) Associative a ∙1 = a , 1∙a = a Identity a + 0 = a, 0 + a = a a + (a) = 0 If a=0, a ∙ 1/a = 1 = 1/a ∙ a Inverse a ( b + c) = ab + bc or (b + c)a = ba + ca Distributive EX3. Name the property illustrated by each equation. a. (5+ 7) + 8 = 8 + (5 + 7)
Property____________________
b. 3(4x) = (3 ∙ 4)x
Property____________________
c. 5(8 – 6) = 5(8) – 5(6)
Property____________________
d. (8 + 8) +15 = 0 + 15
Property____________________
e. 5a + (5a) = 0
Property____________________
EX4. Identify the additive inverse and the multiplicative inverse of each number. OPPOSITES sum is 0 PRODUCT of reciprocals is 1 a. –1 3/4 Add. Inv.____________ Mult. Inv._____________ b. 1.25
Add. Inv.____________
Mult. Inv._____________
c. –7
Add. Inv.____________
Mult. Inv._____________
d. 4/3
Add. Inv.____________
Mult. Inv._____________
EX5. Simplify each expression
a. 2(5m + n) + 3(2m – 4n)
b.
Answer___________________
3x + 5y + 7x –3y
Answer___________________
c. 1/4 (6 + 20y) – 1/2 (19 – 8y)
Answer___________________
Summary/Questions: Assignment: Honors Worksheet 1.2 all