Cold Recycling & Bitumen Stabilised Materials BSMs Research and Implementation? Kim Jenkins
57th Annual Illinois Bituminous Paving Conference 12th December 2016 tellenbosch tellenbosch
Outline 1. 2. 3. 4. 5.
What is BSM? Mix Design Structural Design Application Where to now?
BSM Binder Options BITUMEN EMULSION
FOAMED BITUMEN
Colloidal Mill
Expansion chamber
Acid or Caustic Soda
Hot bitumen
Surfactants
Water
Bitumen
Wat
Water
Air
Mill
5 microns
Cement %
Rigidity
4 3
Orientation on BSM
Cement stabilised
Noncontinuously Bound
Bound 2 1
BSM
0
Asphalt Granular
Bound
Unbound
0
1
2 3 4 Bitumen %
Flexibility
5
6
Influence of Active Filler Strength versus Flexibility
BSM foam
BSM
eb 800
4000 Foamed bitumen, Strain Cement, Strain* Foamed bitumen, UCS Cement, UCS*
Strain-at-break
600 500
3500 3000 2500
Cement < 1%
400
Unconfined Compressive Strength (kPa)
700
2000
300
1500
200
1000
100
500
0
0 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
Cement : Foamed Bitumen Ratio *
CSIR
Cement treated with 2 percent cement and no foamed bitumen. Values plotted at an arbitrary ratio of 1.25 for 2 percent cement and 1.2 for 1 percent cement.
BSM Triaxial Tests Shear properties (monotonic tests at 25°C) Friction Angle f
Cohesion C
50
400 300 200 100
E E F E E F E E F
30 25
E E F E E F E E F
20
C-75M-0
B-75M-0
A-75M-0
C-75C-1
B-75C-1
25% RAP
A-75C-1
Jenkins, 1999 & Ebels, 2006
35
C-75C-0
75% RAP
40
B-75C-0
C-75M-0
B-75M-0
A-75M-0
C-75C-1
B-75C-1
A-75C-1
C-75C-0
B-75C-0
A-75C-0
25% RAP
45
A-75C-0
0
Friction angle [degrees]
Cohesion [kPa]
500
75% RAP
Resilient Modulus of BSM Resilient Modulus Mr (MPa)
Stress dependency: Foamed BC = 2% HMA > 2500 MPa BSM
1350 1150 950
s3
750
GCS
12kPa 24kPa 48kPa 72kPa
550 350 150 0.0
200.0
400.0
600.0
800.0
1000.0
Sum of Principal Stresses q (kPa)
Research: Visco-elasto-plastic & flexural properties on BSM-foam HMA/WMA
Tref = 20C
Fatigue cracks
HW BSM BSM Rutting
Equiv HOT T or Slow Traffic
Equiv COLD T or Fast Traffic
BSM test methods C,f Mix design to Performance Design BSM layers
Reality Index
h1 h2 h3
Testing
S Vl ie be rv ae t o r y H a m m e r
Compaction
1990
2000
>200 project mix designs!
Z e Sr idSo B L e tW a i o eo s e n f o e l e Md P o Re lo ul 2010 adnb d t a e s e
Years
Mix Design Flowchart Sampling Optimum bitumen addition
Blend Sample preparation
No
SUITABLE?
Determine shear properties
TRIAXIAL Yes
Effect of active filler
Specification Preliminary tests
ITS
C (kPa)
f (0)
>250
>40
Standardised Mixing Method FOAMED BITUMEN UNIT
PUGMILL MIXER
Lab Compaction: Vibratory Hammer
Vibratory hammer
Power rating (W)
Frequency (Hz)
Mass (Kg)
Point Energy (J)
Kango 637®
750
45.83
7.5
27
Bosch GSH 11E®
1500
15 - 31.5
10.1
16.8
Bosch GSH 11VC®
1700
15 - 30
11.4
23
For PI >8%, cannot achieve 100% Mod. AASHTO density
Influence of Frame FRAME TYPE
Refusal Density 2400 80% OMC, RFR, 10kg Surcharge
Density (kg/m3)
2350
Rigid
2300 80% OMC, LFR, 10kg Surcharge
2250 2200 2150 2100
Loose
80% OMC, RFR, 20kg Surcharge
Rigid
80% OMC,LFR, 20kg Surcharge
Loose
2050 G2
G4
Material Type
Comparison of refusal density for G2 and G4 material
(Stell Univ)
Inter-Layer Roughening (ILR) Device
ITS
2 layers
6 layers Triaxial X 50mm
Inventor: Wynand van Niekerk
S1A
CT Scans BSM-emulsion
85
75
Scan slice nummer (boorkern lengte in mm).
65
55
Poor attention to interlayer preps
45
35
25
15
voids Mortar stone
5
-5
0
20
40
60
Volume in %
80
100
Why is curing important? Mr (field) versus cure
PSPA
N7 PSPA Mr Analysis over 7 Months
Mr (MPa)
B1-B3
B4-B6
Poly. (B4-B6)
% OMC
4000 3500 3000 2500 2000 1500 1000 500 0
100
Mr
MC
80 60
Moisture 0
50
100
150
200
Tim e (days)
tellenbosch
New Triaxial Apply Load (stress s1)
Test at 25ºC Confining Pressure s3 (inflate tube)
40 250
Validation
1200 1000 800 600 400 200 0
RTT STT
0.0
1.0
2.0
3.0
4.0
Applied Stress [kPa]
Applied Stress [kPa]
Research Triaxial Test RTT versus Simple Triaxial Test STT
1400 1200 1000 800 600 400 200 0
RTT STT
0.0 1.0 2.0 3.0 4.0 5.0
Strain [%]
Strain [%]
BSM Crushed Hornfels with 3.3% Emulsion tellenbosch s3 =50 kPa
and 1% Cement
s3 = 200 kPa and 0% Cem
APPLY LOAD (3mm/min)
σ1
σ3
APPLY CONFINING PRESSURE (AIR)
Determine shear properties (C and φ) σ 1
BSM
t Shear stress
σ3
UNBOUND f Friction angle
σ1
σ3 Cohesion 0
50
100
s Normal stress
200
(kPa)
Durability of BSM t Shear stress
f Friction angle
Effect of Moisture Cohesion Loss = 25% max
CBSM Cohesion
Retained Cohesion CR = CR*100/CBSM
s Normal stress
Structural Design Considerations
90mm Asphalt 250mm CIPR: 2.5% Foam 1% Cem
BSM Design for Max Rut Depth (same principle as Granular Design)
Permanent deformation (rutting) design for granular material
Lab Triaxial Analysis
Design Life for 10mm rut
Design Function for BSM Plastic Strain (a/b)
Relative Density
a
b
𝑁 = 𝑓 (𝑅𝐷, 𝑅𝑒𝑡𝐶, 𝑃𝑆, 𝑆𝑅) Stress Ratio
Retained Cohesion
Mr change with trafficking (triaxial) 2000.0
BSM1-foam (2%)
1800.0
SR=49% SR=57% SR=65% SR=67%
Resilient Moduli (MPa) .
1600.0 1400.0 1200.0 1000.0 800.0 600.0 400.0 200.0 0.0 100
1,000
10,000
100,000
1,000,000
Load repetitions
Jenkins et al, IJPE
Jenkins, TU Delft, 1999
In service behaviour of Mr
Effective Stiffness (Mpa)
Influence of support & traffic 2000
Conceptual
Traffic Poor Support High sd/sd,f
1500
1000
N7
500
0 0
1
2
3
4
5
6
7
8
9
10
1% cem CTSB 1% cem G5SB 1% cem G7SB
Cem % Support BSM1 type
Years or Traffic
Effective Long Term Mr for BSM base Mr from FWD back-calcs
2%cem 2%cem 1%cem 1%cem
SAPDM - R35 : Theyse, 2015 & Lynch, 2014
Effective Long Term Mr Stiffness (MPa) for BSM base Supporting Layer BSM Class BSM (RAP + GCS) BSM
Cemented Subbase 900 – 1750
Granular Subbase
800 – 1200
600 – 900
700 – 1200
(GCS Grade Crushed Stone) ELT Mr = f (aggregate type and quality, RAP %, bitumen %, support, traffic, climate)
Case Study – Ayrton Senna Highway Brazil’s most heavily-trafficked highway 8-lanes / divided
30
Key Data AADT > 200,000vpd (15% heavy) (> 15,000 heavies / day in each direction)
Milling & Replacing 100mm HMA lasts < 3 months Lane closure only between 21:00 – 05:00
8 HOURS
Results from Pavement Investigation HMA ± 100mm
CEMENTED CRUSHED STONE ± 250mm
6% CEMENT GRADED CRUSHED STONE ± 200mm
SELECTED COARSE GRAVEL (CBR >25) ± 200mm
EMBANKMENT (RIVER LEEVEE) (CBR > 15) Semi-infinite
Rehabilitation Options??
(8-hour working window) HMA
350mm
HMA ?
BSM-b
20mm 50mm 130mm 100mm
BSM-a 200mm
?
Step 1. Mill off asphalt layers
100mm
Impact crusher (20mm setting)
Grading Correction using Single Stage Crushing
Normal CONTINUOUS RAP
Wirtgen KMA 220 plant mixer 2.0% / 2.1% Foamed Bitumen 1.0% OPC
Mixed material placed in stockpile
AFTER CRUSHING
Step 2. Mill and remove CTB layer
250mm
Step 5. Import / pave / compact 130mm BSM layer
130mm BSM (RAP / crushed stone blend)
Step 6. Import / pave / compact 20mm HMA
20mm HMA (gap-graded / fine mix) Temporary surfacing
18th November 2011
31ST January 2012
Currently (3.75 years later)
> 100 lane-km rehabilitated using this method
PROBLEM SOLVED !
Way Forward: Research Monotonic Load Cycle (triaxial)
GCS
BSM (Bredenhann & Jenkins, 2016)
Way Forward: Research Dynamic Conditioning (triaxial)
GCS
BSM (Bredenhann & Jenkins, 2016)
Way Forward: Research(2) Dynamic Triaxial – Permanent Deformation Deformation rate
(ep/N x 10-6)
0.035 0.030 0.025 0.020
GCS
0.015
BSM
0.010 0.005 0.000 0.5
0.6
0.7
0.8
0.9
1
Stress ratio
(Bredenhann & Jenkins, 2016)
Flexural Strain-at-break All beams compacted in a mould Testing temperature:
25°C
LVDT on top of the beam to accurately measure displacement in the middle of the beam.
LVDT
(Campher, 2014)
Flexural Strain-at-break & DE Material parameter Average Average StrainAverage Maximum Stress at-break Dissipated (kPa) (µԐ) energy (Pa)
Specimen specification
Average stiffness (MPa)
0.9% Emulsion; 1% Cement
174.4
376.5
39.1
524.2
254.9
537.2
89.8
473.1
320.4
391.1
211.6
480.8
383.8
508.7
2.4% Emulsion; 1% Cement 2.4% Emulsion; 2% Cement 2.4% Foamed; 1% Flexibility related parameters
Average stiffness (MPa)
Cement 2.4% Foamed; 2%
821.6 Increase in 78.8 bitumen emulsion (specimens containing 1% cement) Increase in cement (stabilised with bitumen emulsion) Increase in 68.7 cement (stabilised with foamed 447.4 bitumen emulsion)
Average Dissipated energy (Pa)
Cement
151.3
761.9
Average Strain-at-break (µԐ) -40.00
-20.00
0.00
20.00
40.00
60.00
80.00
% Change in parameter value
100.00
120.00
140.00
(Campher, 2014)
Flexibility (triaxial)
(Llewellyn, 2016)
Flexibility (triaxial)
(Llewellyn, 2016)
Factors Influencing BSM Flexibility Analysis of Variance Summary of P values for variables in ANOVA analysis 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 P- 0.45 value 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0
Strain at Break Dissipated Energy
Significant Variables <0.05 Fenton, 2013
Conclusions • Mix design system in place – Aim for flexibility not high strength – Update of equipment (vib hammer & triax)
• Pavement design – New ME design function – Link of mix- and pavement-design (C & f)
• Application (field performance data) • Way forward: flexibility focus tellenbosch
tellenbosch
Pavement Balance BSM Base
Granular Base
Mr (MPa) Asp
3000
CTB G1
500 2800
G5
350
Mr (MPa)
Base
Subbase
tellenbosch
150
---- >1500 350
Asp BSM1 CTSB G5
200
200 SG
3000 800 >1000
Subgrade
150
SG
Research on BSM Flexibility How can we benefit from?
(Llewellyn, 2016)
Strain-at-break vs Fatigue 25%RA & 0%Cem
1E+07 emulsion A
Number of repetitions
1E+06
emulsion B
4PB Fatigue
1E+05
foamed bitumen C
1E+04 1E+03 1E+02
B
1E+01
Strain at break
1E+00 100
A
C
1,000 10,000 Strain [x 10 -6 ]Stellenbosch University