1. Conceptos De Confiabilidad

  • Uploaded by: gabrielcarm7938
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 1. Conceptos De Confiabilidad as PDF for free.

More details

  • Words: 20,911
  • Pages: 275
1. CONCEPTOS DE CONFIABILIDAD

1-1

Objetivo: Presentar los conceptos indispensables para entender la confiabilidad

Propósitos – – – – – – – –

presentar el concepto de tiempo de vida y falla exponer el concepto de distribución de probabilidad definir confiabilidad definir MTBF - MTTF explicar el “tiempo de misión” visualizar la velocidad de falla gráficamente presentar los elementos de estadística descriptiva obtener una distribución empíricamente 1-2

CONFIABILIDAD ¿PARA QUÉ?

• ¿Cuál es la vida promedio del producto? • ¿Cuántas fallas espera el próximo año? • ¿Cuánto nos costará desarrollar y dar servicio a este producto? • ¿Cómo podemos hacerlo más efectivo en costo? 1-3

TIEMPO DE VIDA Y FALLA La confiabilidad es una medida del Tiempo de Vida útil de un producto. Durante este período el cliente obtiene las características ofrecidas intencionalmente. Cuando cesa la capacidad del producto para entregar la característica ofrecida al cliente, se considera que ha habido una Falla del producto. Esto representa el término del tiempo de vida.

1-4

MODELOS DE TIEMPO DE VIDA Para modelar el tiempo de vida se asigna una medida: La frecuencia relativa o la probabilidad con que ocurrirá el evento. La regla que asigna valores de frecuencia relativa o probabilidades a los valores de una variable se llama Distribución de Probabilidad 1-5

DISTRIBUCIONES DE PROBABILIDAD • Función de Densidad de Probabilidad (pdf), f(t) – Predice el comportamiento de cualquier situación probabilística – Probabilidad de t de caer en algún punto del rango t1 a t2

t2

p( t1  t  t 2 )   f( t )dt t1

f(t)

El área total bajo la curva siempre es 1 o 100%

t1

t2

t

1-6

EJEMPLOS DE DISTRIBUCIONES DE PROBABILIDAD 138.573 132.988 234.234 63.378 28.855 49.089 123.442 49.526 71.698 45.352 182.344 225.349 137.758 93.901 77.471

172.78 45.735 62.171 78.558 75.812 75.492 27.978 145.911 95.475 175.935 34.899 43.461 52.311 49.619 92.019

39.655 9.52 29.374 46.076 193.45 103.507 107.717 179.036 61.099 46.613 82.272 176.949 145.45 73.873 117.592

30.0000

30

Histograma

20

Percent

56.399 56.554 35.389 56.215 188.26 90.882 132.312 60.465 301.525 302.01 101.978 98.37 64.026 43.881 53.358

15.0000 13.3333

10

8.3333

8.3333 6.6667 6.6667 3.3333 3.3333

3.3333

1.6667 0.0000 0.0000

0 0

100

200

300

OBS 0.4

f(t)

0.3

PDF Weibull

0.2

0.1

0.0 0

5

10

t

1-7

DISTRIBUCION ACUMULADA DE PROBABILIDAD Si acumulamos las probabilidades desde el inicio hasta un tiempo t1, obtenemos la Distribución de Probabilidad Acumulada {CDF ó F(t)}.

F(t1) = P(t  t1)

1-8

DISTRIBUCION ACUMULADA DE PROBABILIDAD • Función de Distribución Acumulada – La Probabilidad de una variable es menor o igual a un valor específico, e.g., t1 t 1

F (t )  P (0  t  t1 )   f (t )dt 0

– Cuando la variable es tiempo de falla, esto representa la no confiabilidad o la probabilidad de que una unidad falle antes del tiempo t1 1-9

DISTRIBUCION ACUMULADA DE PROBABILIDAD t1

Ft () P (0t t1) f() t dt 0

Función de Densidad de Probabilidad

1

Función de Distribución Acumulada

f(t)

F(t)

No confiabilidad, F(t)

t1

t

0 0

t1

t

1-10

DEFINICIÓN DE CONFIABILIDAD Confiabilidad es la probabilidad de que un sistema ejecute su función de intención sin fallar para un intervalo específico, bajo condiciones establecidas. Se define como la Probabilidad de Supervivencia en un determinado tiempo.

R(t) = 1 - F(t) Algunos autores presentan como sinónimos Supervivencia y Confiabilidad 1-11

DEFINICIÓN DE CONFIABILIDAD t



0

t

R( t )  1F( t )  1  f( t )dt   f( t )dt Función de Densidad de Probabilidad

Función de Confiabilidad

f(t)

R(t)

1

0 0

t1

t

0

t1

t

1-12

MTBF - MTTF Si el tiempo de vida para una característica de calidad es una variable aleatoria y conocemos su distribución de probabilidad , podemos calcular una medida de localización, por ejemplo el valor de su media. El valor medio del Tiempo de Vida se denomina Tiempo Promedio entre Fallas, MTBF es el acrónimo en Inglés, y se refiere a una medición básica de confiabilidad para artículos que se pueden reparar. MTTF se refiere al Tiempo Promedio de Fallas, esto es para artículos que no pueden ser reparados. 1-13

MTBF - MTTF 98.932 20 15.0000 13.3333

10

N

m 0.4

i 1

0

N

100

200

300

tiempo

La media calculada para esta distribución Weibull es función de sus parámetros =2 y =2  1 MEDIA  1    

0.0 10

t

3.3333

0.0000 0.0000

0

i

0.1

5

8.3333 6.6667 6.6667 3.3333 3.3333

0.2

0

8.3333

1.6667

1.77245

0.3

f(t)

t

30.0000

30

Percent

La media estimada del tiempo de vida está marcada con la línea punteada es de 98.932, se obtuvo calculando el promedio de los tiempos

1-14

TIEMPO DE MISIÓN Tiempo de Misión se refiere al tiempo intentado durante el cual el producto entrega la característica de calidad satisfactoriamente. El Tiempo de Misión es una decisión de negocios y sirve para establecer una meta de logro por parte del producto en cuanto a sus características. Tiempo de Misión

¿Qué confiabilidad lograremos?, R(tiempo de misión) 1-15

VELOCIDAD DE FALLA La Velocidad de Falla ó Tasa de Riesgo o también Tasa de Falla es la fracción de fallas probables entre la proporción de supervivientes al tiempo t. Cuando se conoce la Distribución de Probabilidad de t, se calcula a partir de

h(t) = PDF / R(t) Es una medida de la “mortalidad” entre los artículos que quedan. La tasa de falla representa la propensión a la falla de un producto como una función de su edad o tiempo en operación. La tasa de falla en cualquier tiempo dado es la proporción que caerá en la siguiente unidad de tiempo respecto a aquellas unidades que han sobrevivido a este tiempo. 1-16

TASA DE FALLA O TASA DE RIESGO Por ejemplo, 1000 motores eléctricos se ponen a prueba en el tiempo CERO. Cuatrocientos de ellos están trabajando a las 2000 horas, 50 de ellos fallaron en las siguientes 100 horas y otros 50 fallaron en las siguientes horas como lo ilustra la figura. 1000

400

350

300

0

2000

2100

2200

No. de sobrevivientes horas

tiempo

La tasa de falla para los motores a las 2000 horas es: h(2000) = (número de fallas por hora posteriores a las 2000 horas) número de sobrevivientes a las 2000 horas = (50/100)/400 = 0.00125 unidades/hora Similarmente, la tasa de falla a las 2100 horas es: h(2100) = (50/100)/350 = 0.0014 unidades/hora

1-17

“CURVA DE LA BAÑERA” Si se dibuja la tasa de riesgo o falla para una población a través del tiempo se observa un comportamiento descrito como la “Curva de la Bañera” h(t) Fallas “infantiles”

Fallas por deterioro o desgaste

Fallas constantes

t 1-18

ESTADISTICA DESCRIPTIVA

Percent

La Estadística Descriptiva se orienta a proporcionar una descripción útil, clara e informativa de una masa de datos numéricos. Esto se hace al considerar tópicos como: •la colección y procesamiento de datos originales, •presentación tabular y gráfica, •fuentes de datos, •distribución de frecuencias, •medidas de tendencia central y • medidas de dispersión.

30.0000

30

20 15.0000 13.3333

10

8.3333

8.3333 6.6667 6.6667 3.3333 3.3333

1.6667

0.0000 0.0000

0 0

3.3333

100

200

300

OBS

Un histograma es una descripción útil, clara e informativa de la distribución de frecuencias

1-19

ESTADISTICOS Un estadístico es cualquier función de las observaciones en una muestra aleatoria, que no dependa de parámetros desconocidos La media muestral, la varianza muestral, la desviación estándar muestral y los coeficientes de variación, sesgo y curtosis son algunos de los estadísticos más comunes. Obsérvese que como un estadístico es una función de los datos provenientes de una muestra aleatoria, es a su vez una variable aleatoria. Es decir, si se obtuvieran dos muestras aleatorias diferentes provenientes de la misma población y se calcularan las medias muestrales, podría esperarse que los valores obtenidos fueran diferentes.

1-20

Estadística Descriptiva Medidas Descriptivas

Descripción

MEDIA

Medida de tendencia central

VARIANZA

Medida de dispersión

COEFICIENTE DE VARIACIÓN

POBLACION E (t )   tf (t )dt

MUESTRA mx



 2    t    f (t )dt 2



Medida del grado de variabilidad

CV 

 

s2 

1 n  xi  x  2  n  1 i 1

COEFICIENTE DE SESGO

COEFICIENTE DE CURTOSIS

Medida de Simetría

3 

 t   

x



x

f (t )dt

 

i 1

4 

 t   



4

s 

 

x

f (t )dt

2 2

i 1

ˆ 4 

 x

2 3/2

n

Medida de Agudeza

i

n

ˆ 3 

2 3/2

la desviación estándar es la raíz cuadrada de la varianza La Normal tiene un rango 0.05
CV = S

n

3

Otras medidas son la mediana y la moda, la media tiene propiedades estadísticas mejores

1 n  xi n i 1

i

 x

n

s 

2 2

4

3

• 3<0 cola izquierda • 3=0 simétrica (v.gr.Normal) • 3>0 cola derecha • 4<0 - aguda que la Normal • 4=0 aguda como Normal • 4>0 +aguda que la Normal

1-21

Estadística Descriptiva • ¿Porqué son importantes los estadísticos? • Describen completamente los datos • Coeficiente de Variación CV • comúnmente utilizado para describir propiedades mecánicas de los materiales. – aproximadamente 15% para fractura – aproximadamente 7% para resistencia a la cedencia • ayudan a determinar la distribución apropiada • la distribución normal tiene un rango 0.05 < CV < 0.25 – Exponencial CV = 1 1-22

Estadística Descriptiva • ¿Porqué son importantes los estadísticos? • Coeficiente de sesgo • medida de simetría – 3 < 0 distribución sesgada a la izquierda(tiene una cola a la izquierda) – 3 = 0 distribución simétrica » Distribución Normal 3 = 0 – 3 > 0 distribución sesgada a la derecha (tiene una cola a la derecha

– Coeficiente de curtosis • medida de agudeza (puntiaguda) – 4 < 3 distribución menos aguda que la Normal – 4 = 3 distribución Normal – 4 > 3 distribución más aguda que la Normal 1-23

Estadística Descriptiva

• Porqué son importantes los estadísticos • los tres ayudan a determinar los parámetros de la distribución • CV – La Exponencial tiene un CV constante

– El parámetro de forma de la distribución Weibull es bien estimado con el coeficiente de variación CV • coeficientes de sesgo y curtosis – la relación entre ellos ayuda a determinar la distribución que mejor se ajusta

1-24

EJEMPLO DE DISTRIBUCIÓN  PDF  f (t )  e t t    CDF F (t ) 1 e t   CONFIABILIDAD R(t ) e TASA DE FALLA h (t )  

1 MEDIA  

Distribución Exponencial

Función de Densidad de Probabilidad Exponencial 0.0035

= 0.003, MEDIA = 333

0.0030

f(t)

0.0025

= 0.002, MEDIA = 500

0.0020

= 0.001, MEDIA = 1,000

0.0015 0.0010 0.0005 0.0000 0

500

1,000 Tiempo

1,500

2,000

1-25

EJEMPLO DE DISTRIBUCIÓN 

 1

 t  PDF  f (t )       CDF  F (t )  1  e

t     

e

t     

Distribución Weibull 2 parámetros





CONFIABILIDAD  R(t )  e

 TASA DE FALLA h (t )    1 MEDIA  1    

t     

 1

t     

1-26

EJEMPLO DE DISTRIBUCIÓN Abra el archivo Distribución.xls

Señale la columna de tiempo y pongala en orden ascendente

Veamos cómo se construyen las curvas de distribución usando el EXCEL 1-27

EJEMPLO DE DISTRIBUCIÓN Agregue un renglón inicial con cero y una columna con un contador que inicie en cero

Agregue una columna donde estime F(t) usando la fórmula de Kaplan Meier*: ( F(t) = i/N)

Obtenga R(t) por la diferencia R(t) = 1-F(t) Note que puede estimar la Confiabilidad de 90% para un tiempo de 35.389

* La fórmula de Kaplan Meier se recomienda para muestras grandes

1-28

EJEMPLO DE DISTRIBUCIÓN Se estima la tasa de falla para los tiempos observados, con el inverso del número de supervivientes 1/(N+1-i)

R(t ) LS  R(t )  Z 2  R(t )  F (t ) N R(t ) LI  R(t )  Z 2  R(t )  F (t ) N

Por último se estima el intervalo de confianza normal al 95% para la confiabilidad

1-29

EJEMPLO DE DISTRIBUCIÓN R(ti)= 1-F(ti)

1.0000

Gráficas de Confiabilidad R(t) y de la Función Acumulada F(t) generadas en EXCEL

0.9000

0.8000

0.7000

0.6000

0.5000

R(ti)= 1-F(ti)

0.4000

0.3000

0.2000

F(ti)= i/N 0.1000

1.0000 0.0000 0

50

100

150

200

250

300

350

0.9000

0.8000

0.7000

Recuerde que: R(t) = 1- F(t)

0.6000

0.5000

F(ti)= i/N

0.4000

0.3000

0.2000

0.1000

0.0000 0

50

100

150

200

250

300

350

1-30

EJEMPLO DE DISTRIBUCION Use el archivo: distribución.mtw

Ahora en Minitab...

1-31

Cálculo de R(t) para un tiempo

Distribution Analysis Variable: tiempo Censoring Information Count Uncensored value 60 Nonparametric Estimates Characteristics of Variable Standard 95.0% Normal CI Mean Error lower upper 98.9320 8.4776 82.3162 115.5478 Median = IQR =

75.8120 83.4620

Q1 =

Kaplan-Meier Estimates Number Time at Risk 9.5200 60 27.9780 59 28.8550 58 29.3740 57 34.8990 56 35.3890 55 39.6550 54 43.4610 53 43.8810 52 45.3520 51 45.7350 50 46.0760 49 46.6130 48 49.0890 47 49.5260 46 49.6190 45 52.3110 44

49.5260

Number Failed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Q3 =

Survival Probability 0.9833 0.9667 0.9500 0.9333 0.9167 0.9000 0.8833 0.8667 0.8500 0.8333 0.8167 0.8000 0.7833 0.7667 0.7500 0.7333 0.7167

Para un tiempo de 35.389 la confiabilidad es del 90%

132.9880 Standard Error 0.0165 0.0232 0.0281 0.0322 0.0357 0.0387 0.0414 0.0439 0.0461 0.0481 0.0500 0.0516 0.0532 0.0546 0.0559 0.0571 0.0582

95.0% Normal CI Lower Upper 0.9509 1.0000 0.9212 1.0000 0.8949 1.0000 0.8702 0.9965 0.8467 0.9866 0.8241 0.9759 0.8021 0.9646 0.7807 0.9527 0.7597 0.9403 0.7390 0.9276 0.7188 0.9146 0.6988 0.9012 0.6791 0.8876 0.6596 0.8737 0.6404 0.8596 0.6214 0.8452 0.6026 0.8307

1-32

INTERPRETACION DE RESULTADOS Nonparametric Hazard Plot for tiempo Empirical Hazard Function

Observamos las gráficas de las distribuciones empíricas de: riesgo y confiabilidad

Complete Data 1.0

Mean

98.932

0.9

Median IQR

75.812 83.462

0.8 0.7

0.5 0.4 0.3

Nonparametric Survival Plot for tiempo

0.2

Kaplan-Meier Method-95.0% Conf idence Interv als Complete Data

0.1 0.0 0

100

200

300

Time to Failure

Las asignaciones de probabilidades se basan sólo en las frecuencias observadas, y no suponen ningún modelo especial.

1.0

Mean

98.932

0.9

Median IQR

75.812 83.462

0.8 0.7

Probability

Rate

0.6

0.6 0.5 0.4 0.3 0.2 0.1 0.0 0

100

200

Time to Failure

300

1-33

PUNTOS CLAVE – tiempo de vida útil y falla – distribución de probabilidad – confiabilidad – MTBF - MTTF – tiempo de misión – velocidad de falla – estadística descriptiva – distribución empírica 1-34

2. MODELOS DE CONFIABILIDAD Distribuciones de Probabilidad »Exponencial »Weibull »Lognormal 1-35

OBJETIVO Presentar los modelos Exponencial, Weibull y Lognormal para la confiabilidad, sus características principales y guías para su empleo Expone ncial Puntos: W eib ul l – – – – – –

Modelos Paramétricos de Confiabilidad Distribuciones de Probabilidad Parámetros Propiedades Situaciones para modelar Guía para elección del modelo

L o g n o rm a l

1-36

Modelos Paramétricos de Confiabilidad Distribuciones Paramétricas • Algunas Distribuciones de Probabilidad se pueden expresar como una función matemática de la variable aleatoria. • La función tiene además de la variable aleatoria, constantes que le dan comportamientos específicos a las distribuciones Los parámetros definen: •FORMA •ESCALA •LOCALIZACION

1-37

¿Qué hay atrás de una distribución? •Los Parámetros definen lo que esta detrás de cada distribución. • Conociendo los parámetros de una distribución podemos inferir el comportamiento de la confiabilidad • La Forma de la distribución • La Escala de la distribución • La Localización de la distribución 1-38

Distribución Normal • La Normal o Distribución Gaussiana es la distribución más conocida • Tiene Media = Mediana = Moda • La Media , es también su parámetro de localización • La PDF normal tiene forma de una campana con simetría sobre su media • La normal no tiene parámetro de forma. Esto significa que la PDF normal sólo tiene una forma, “la campana” y esta forma no cambia • La desviación estándar , es el parámetro de escala de la PDF normal 1-39

Distribución Normal  1 t    2  1 f( t )  exp        2  2   

Distribución de la Función Normal

Función de Densidad de Probabilidad Normal 0.0140 0.0120  = 500  = 30  = 50  = 70

f(t)

0.0100 0.0080 0.0060 0.0040 0.0020 0.0000 200

400

600 Tiempo

800

1000

1-40

Distribución Normal 

R( t )   f( t )dt 



 (z)dz

t z( t ) Función de Distribución Normaldonde z(t) = (t-/ y (z) = normal estandarizada pdf Función de Confiabilidad Normal 1.000 0.800

R(t)

0.600

 = 500  = 30  = 50  = 70

0.400 0.200 0.000 200

400

600 Tiempo

800

1000

1-41

Distribución Normal  (z) Funciones de Distribución Normal h(t )  R ( z )

donde (z) =normal estandarizada pdf

Función Normal de Tasa de Falla 0.2500 0.2000

 = 500  = 30  = 50  = 70

h(t)

0.1500 0.1000 0.0500 0.0000 200

400

600 Tiempo

800

1000

1-42

Distribución Normal • Distribución Normal – Tienden a seguir una distribución normal los ciclos de falla en componentes mecánicos sometidos a niveles altos de estrés – Es útil si el coeficiente de variación es pequeño (<10%) – Las propiedades de varios materiales tienden a seguir una distribución Normal – Las fallas a la tensión de muchos materiales estructurales siguen una distribución Normal – Puede representar el tiempo de falla cuando un efecto aditivo es involucrado, i.e., el Teorema del Límite Central (CLT)

1-43

Distribución Exponencial • El modelo exponencial, con un solo parámetro, es el más simple de todo los modelos de distribución del tiempo de vida. Las ecuaciones clave para la exponencial se muestran:  t

CONFIABILIDAD : R(t )  e  PDF : f (t )  e t 1  MEDIA : m  ln 2 0.693  MEDIANA :   1 VARIANZA : 2  TASA DE FALLA :h (t )  

t

Función de Densidad de Probabilidad Exponencial 0.0035

= 0.003, MEDIA = 333

0.0030 0.0025

f(t)

CDF : F (t )  1  e

= 0.002, MEDIA = 500

0.0020

= 0.001, MEDIA = 1,000

0.0015 0.0010 0.0005 0.0000 0

500

1,000 Tiempo

1,500

2,000

1-44

Distribución Exponencial R(t) = e(-t) (Confiabilidad) Función de Confiabilidad Exponencial 1.200 1.000

R(t)

0.800

= 0.001, MTBF = 1,000 = 0.002, MTBF = 500

0.600

= 0.003, MTBF = 333

0.400 0.200 0.000 0

500

1,000 Tiempo

1,500

2,000 1-45

Distribución Exponencial h(t) = MEDIA(Velocidad de Falla) Función de la Tasa de Falla Exponencial 0.004 = 0.003, MTBF = 333

0.003 h(t)

= 0.002, MTBF = 500

0.002 = 0.001, MTBF = 1,000

Note que la tasa de falla tiende a ser una constante  para cualquier tiempo. La distribución exponencial es la única que tiene una velocidad de falla constante

0.001

0.000 0

500

1,000 Tiempo

1,500

2,000

1-46

Distribución Exponencial • Distribución Exponencial – Es usada como el modelo, para la parte de vida útil de la curva de la bañera, i.e., la tasa de falla es constante – Los sistemas complejos con muchos componentes y múltiples modos de falla tendrán tiempos de falla que tiendan a la distribución exponencial – desde una perspectiva de confiabilidad, es la distribución más conservadora para predicción.

La forma de la exponencial siempre es la misma 1-47

Distribución Exponencial •

La Distribución exponencial de 2 parámetros tiene las siguientes ecuaciones:

CDF : F (t )  1  e

 ( t  )

CONFIABILIDAD : R(t )  e   PDF : f (t )  e ( t )

 ( t  )

1  ln 2 0.693   MEDIANA :     1 VARIANZA : 2  TASA DE FALLA :h (t )  

MEDIA : m   

 es el parámetro de localización, si es positivo, cambia el comienzo de la distribución por una distancia  a la derecha del origen, significando que las posibilidades de falla empiezan a ocurrir sólo después de  horas de operación, y no pueden ocurrir antes. Note que la varianza y la tasa de falla son iguales a las de la exponencial de un parámetro

1-48

Distribución Weibull •

La distribución de Weibull es un modelo de distribución de vida útil muy flexible, para el caso de 2 parámetros:

CDF : F (t )  1  e

t      



CONFIABILI DAD : R(t )  e

 PDF : f (t )   Donde  es un parámetro de escala (la vida característica) y  se conoce como el parámetro de forma (pendiente) y  es la función Gamma con (N)=(N-1)! para N entero

t     

 1

e

t     

t      





 1 MEDIA : 1     MEDIANA :   ln 2 

1 

 2   1  VARIANZA :  1    1         

2

2

 TASA DE FALLA : 

t    

 1 1-49

Distribución Weibull Una forma más general de 3 parámetros de la Weibull incluye un parámetro de tiempo de espera (localización ó desplazamiento). Las fórmulas se obtienen reemplazando t por (t-). No puede ocurrir una falla antes de  horas, el tiempo comienza en  no en 0.

CDF : F (t )  1  e

 t     

  



CONFIABILI DAD : R(t )  e  1

 PDF : f (t )  

t     e     1 MEDIA :   1     MEDIANA :     ln 2 

 t     

 t    

  

  





1 

 2   1  VARIANZA :  1    1         

2

2

 TASA DE FALLA : 

t    

  

 1 1-50

Distribución Weibull  t  f ( t )    Función de Distribución Weibull   

 1

    t     exp             

Función de Densidad de Probabilidad Weibull 0.0030  = 0.5  = 1000

0.0020

f(t)

 = 1.0  = 1000

 = 3.4  = 1000

0.0010

0.0000 0

500

1000

1500 Tiempo

2000

2500

3000

1-51

Distribución Weibull Funciones de Distribución Weibull

    t     R( t) exp              

Función de Confiabilidad Weibull 1.000  = 3.4  = 1000

0.800

 = 1.0  = 1000

R(t)

0.600 0.400  = 0.5  = 1000

0.200 0.000 0

500

1000

1500 Tiempo

2000

2500

3000

1-52

Distribución Weibull  t  h (t)     

Funciones de Distribución Weibull

 1

Función Tasa de Falla Weibull 0.0060  = 3.4  = 1000

0.0040

h(t)

 = 0.5  = 1000  = 1.0  = 1000

0.0020

0.0000 0

500

1000

1500 Tiempo

2000

2500

3000

1-53

Distribución Weibull

• Distribución Weibull – mientras la función pdf de la distribución exponencial modela la característica de vida de los sistemas, la Weibull modela la característica de vida de los componentes y partes – modela fatiga y ciclos de falla de los sólidos – es el traje correcto para datos de vida • La función de distribución Weibull pdf es una distribución de la confiabilidad de los elementos de una muestra

• muy flexible y puede tomar diferentes formas

1-54

Distribución Weibull • Tiene usted una Distribución Weibull con =2 y =2, ¿Cuál es la media y la varianza?  1 m  1      2   1  varianza   2 1    1         

11 22

2

Archivo Weibull.xls

33

1-55

Índice de falla 

Distribución Weibull

 decreciente < 1 Fallas tempranas

 constante

 creciente

= 1

> 1 Desgaste

Tiempo de vida útil

tiempo

Las tres porciones de la curva de tina de la bañera tienen diferentes índices de falla. Las fallas tempranas se caracterizan por un índice de falla decreciente, la vida útil por un índice de falla constante y el desgaste se caracteriza por un índice de falla creciente. La distribución de Weibull puede modelar matemáticamente estas tres situaciones.

 < 1 disminuye la tasa de riesgo, implica mortalidad infantil  = 1 tasa de riesgo constante, fallas aleatorias 1<  < 4 aumenta la tasa de riesgo, fallas por corrosión, erosión  > 4 aumenta rápidamente la tasa de riesgo, implica fallas por desgaste y envejecimiento

1-56

La Distribución Weibull - Interpretación  < 1 (Tasa de riesgo decreciente) •Implica mortalidad infantil •Si esto ocurre, puede existir: Carga, inspección o prueba inadecuada Problemas de Manufactura Problemas de reparación •Si un componente sobrevive la mortalidad infantil , la resistencia a fallar mejora con la edad.  1 <4 (Tasa de Riesgo creciente)

•Si esto ocurre La mayoría de los baleros y engranes fallan Corrosión o Erosión El reemplazo programado puede ser efectivo en costo =3.44aprox. Normal, =2Rayleigh

 = 1 (Tasa de riesgo constante) •Implica fallas aleatorias(Distribución Exponencial) •Una parte vieja es tan buena como una nueva •Si esto ocurre: Mezcla de modos de falla Las fallas pueden deberse a eventos externos, como:luminosidad o errores humanos Fundido y removido antes de su desgaste 4 (La tasa de riesgo crece rápidamente) •Implica edad avanzada y rápido desgaste •Si esto ocurre, sospeche de: Propiedades del material Materiales frágiles como la cerámica Variabilidad pequeña en manufactura o 1-57 material

Distribución Weibull •Cuando  = 2.5 la Weibull se aproxima a la distribución Lognormal(estas distribuciones son tan cercanas que se requieren tamaños de muestra mayores a 50 para distinguirlas). •Cuando se modela el tiempo que se necesita para que ocurran reacciones químicas, se ha mostrado que la distribución Lognormal usualmente proporciona un mejor ajuste que la Weibull. •Cuando  = 5 la Weibull se aproxima a una Normal puntiaguda.

1-58

Distribución Weibull Debido a su flexibilidad,hay pocas tasas de falla observadas que no pueden modelarse adecuadamente mediante la Weibull. Algunos ejemplos son. 1.La resistencia a la ruptura de componentes o el esfuerzo requerido para la fatiga de metales. 2.El tiempo de falla de componentes electrónicos. 3.El tiempo de falla para artículos que se desgastan, tales como las llantas de un automóvil. 4.Sistemas que fallan cuando falla el componente más débil del sistema(la distribución Weibull representa una distribución de valor extremo). 1-59

Distribución Weibull •¿Qué pasa en una distribución Weibull si el tiempo tiene el valor de la vida característica, t = ?   t     R(t )  exp           si t          R(t   )  exp      e 1  0.3678       F (t   )  1  R(t   )  0.6321

Al llegar al tiempo de vida igual a la vida característica el 63.2% de los elementos habrá fallado. Este hecho se usa en las gráficas para identificar el valor de  (eta)

Este mismo resultado se obtiene para el caso exponencial, recordando que la Weibull se puede reducir a una exponencial cuando = 1.

1-60

Distribución Lognormal • Un tiempo de falla se distribuye según una Lognormal si el logaritmo del tiempo de falla está normalmente distribuido. • La Distribución Lognormal es una distribución sesgada hacia la derecha. • La PDF comienza en cero, aumenta hasta su moda y diminuye después.

1-61

Distribución Lognormal • Si un tiempo t está distribuido Lognormal, t~LN( t,  t) y si Y = ln(t) entonces Y~N( y,  y) t PDF

f (t ) 

1 t y

2

y = ln(t) e

1 y y   2   y

   

2

f (y ) 

1

 y 2

e

1 y y   2   y

CDF

 ln(t  T50 )   F (t )      y  

 y  y F ( y )     y 

MEDIA

  y2    t  T50  exp  y   2  

 y  ln(T50 )

MEDIANA VARIANZA

T50  exp(  y ) 

t



T502 exp( y2 ) exp( y2 )  1

(z) es la CDF de la Normal estándar

2

   

 y

 t2 1 2 t



   

  t2 ln1  2 t 

    1-62

Distribución Lognormal • La Distribución de vida Lognormal, como la Weibull, es un modelo muy flexible que puede empíricamente ajustar a muchos tipos de datos de falla. En su forma de dos parámetros tiene los parámetros ln(t) = y parámetro de forma, y T50 = la mediana (un parámetro de escala) • Si el tiempo para la falla t, tiene una distribución Lognormal, entonces el logaritmo natural del tiempo de falla (y =ln(t)) tiene una distribución normal con media y = ln T50 y desviación estándar y. • Esto hace a los datos lognormales convenientes para trabajarlos así: determine los logaritmos naturales de todos los tiempos de falla y de los tiempos censurados (y = ln(t)) y analice los datos normales resultantes. Posteriormente, haga la conversión a tiempo real y a los parámetros lognormales usando y como la forma lognormal y T50 = exp(y como (mediana) el parámetro de escala.

1-63

Distribución Lognormal  1 ln( t )   2  1 f( t )  exp       t 2      2

Función de Distribución Lognormal

donde  y  son funciones de ln’s

Función de Densidad de Probabilidad Lognormal 0.5000

0.3000

=0 =1

f(t)

0.4000

=0  = 0.5

=1  = 0.5

0.2000

=1 =1

0.1000 0.0000 0

1

2

3 4 Tiempo

5

6

7

1-64

Distribución Lognormal Función de Distribución Lognormal







t

ln( t )

z[ln( t )]

R( t )   f( t )dt 

 f[ln( t)]d[ln( t)] 

 (z)dz

donde z[ln(t)] = [ln(t)-/] (z) = normal estandarizada normal pdf

Función de Confiabilidad Lognormal 1.000 =1  = 0.5

0.800

=1 =1

R(t)

0.600 =0 =1

0.400 =0  = 0.5

0.200 0.000 0

1

2

3 4 Tiempo

5

6

7

1-65

Distribución Lognormal Función de Distribución Lognormal

h (t) 

f( t ) R( t )

Función Tasa de Falla Lognormal 0.7000 =0  = 0.5

0.6000

h(t)

0.5000 0.4000

=1  = 0.5

0.3000 0.2000 0.1000

=1 =1

0.0000 0

1

2

=0 =1

3 4 Tiempo

5

6

7

1-66

Distribución Lognormal – Ejemplo: Dado t~LN(25,4), encuentre P(t<18) • Calculemos los valores que nos permiten usar la tabla normal estándar 2

 t2 4 T50   t  1  2  25  1     24.68 t  25  2 2      4   2 t     y  ln1  2   ln 1      0.02527   25    t   

 y  0.02527  0.1589 • Para poder usar las Tablas de la Normal Estándar: – P(t<18) = P{Z<[ln(t/ T50)]/ y] = P{Z<[ln(18/24.7)]/0.159} = P(Z<-1.99) = 0.023

1-67

Distribución Lognormal • Distribución Lognormal – Número de ciclos de falla en la fatiga de los metales y partes metálicas, niveles de tensión significativamente menores que sus límites – Representa bien el tiempo de falla de los dispositivos mecánicos, especialmente en el caso de uso – La resistencia de materiales frecuentemente sigue una distribución Lognormal – Las variables de peso son frecuentemente bien representadas con una distribución Lognormal – Es una buena distribución para cualquier variable – La medida de cualquier resultado el cual es el resultado de una proporción o efecto multiplicativo es Lognormal 1-68

Modelos Paramétricos de Confiabilidad •

Ventajas – Usados cuando la distribución subyacente de los tiempos de falla se conoce o puede ser supuesta • Datos de prueba previos • Parámetros de industria aceptados (v.g., MIL-HDBK-217) • Conocimiento Ingenieril del mecanismo de falla

– Tiene más poder para hacer una decisión correcta que en las pruebas no-paramétricas – Rinde información más precisa que los métodos noparamétricos • Los intervalos de confianza son más amplios usando noparamétricas

– Permite extrapolar fuera del rango de los datos

1-69

Modelos Paramétricos de Confiabilidad • Desventajas – El uso no apropiado del modelo puede llevar a conclusiones incorrectas – Implica un conocimiento previo del comportamiento de los mecanismos de falla y su efecto en la observación estadística – Si no se conoce nada sobre la falla debe tenerse cuidado en un procedimiento para seleccionar un modelo adecuado. 1-70

Cuadro de Distribuciones Modelos Comunes de Confiabilidad

Exponencial

Weibull

Función de Densidad de Probabilidad (pdf), f(t)

f(t) = exp(-t)

Función de Confiabilidad, R(t)

    t     R(t) = exp(-t) R( t ) exp               

Función de Tasa de Falla, h(t)

h(t) = 

Tiempo Medio Entre Fallas (MTBF) Parámetros

Aplicaciones

T

1 

1/= escala sin forma Sistema complejo vida útil electrónica

 t  f(t)     

 1

  t     exp           

 h (t)   t   

 1

1 T   ( 1) 

 = escala  = forma, o pendiente Weibull  < 1, fallas infantiles  = 1, exponencial  > 1, desgaste  app 3.4, app. normal muy flexible bien para fatiga en componentes mecánicos

Normal  1 t   2  1 f( t)  exp       2  2     

R(t) (zdz ) z(t)

h (t) 

( z ) R ( z )

T  media

Lognormal f( t ) 

 1  ln( t)    2  1 exp         t 2   2 

R( t) 



 (z)dz

z[ln(t )]

f(t)

h (t) R(t) 1 T  exp(T '  2 T ' ) 2 donde T' es la funcion ln(t)

media = localización = escala

media de ln’s = escala de ln’s= forma

z(t) = (t - )/ (z) = pdf normal std. desgaste alto efectos aditivos (CLT)

z[ln(t)] = (ln(t) - )/ donde  = media de ln’s  = desv. std. de ln’s (z) = pdf normal std. fatiga en metales 1-71 desgaste de partes mecánicas efectos multiplicativos

Identificación de Modelos • Debemos de elegir cuidadosamente el modelo apropiado de distribución de vida – Cualquiera que sea el método usado para escoger el modelo, debemos verificar: • que tenga “sentido” - por ejemplo no usar un modelo exponencial que tiene una tasa de falla constante para modelar una falla de desgaste. • Pasar las pruebas estadísticas y visuales para ajuste de datos 1-72

Identificación de Modelos • Gráficas, Abrir: identificación.mtw Descriptive Statistics

•No pasa el criterio de normalidad

Variable: T Anderson-Darling Normality Test A-Squared: P-Value:

0

100

200

300

400

500

95% Conf idence Interv al f or Mu

2.339 0.000

Mean StDev Variance Skewness Kurtosis N

101.453 101.127 10226.7 2.00837 5.38151 50

Minimum 1st Quartile Median 3rd Quartile Maximum

0.124 30.898 82.077 124.588 520.432

95% Conf idence Interv al f or Mu 72.713 48

58

68

78

88

98

108

118

128

138

130.193

95% Conf idence Interv al f or Sigma 84.475

•  =0.9966, el coeficiente de variación es prácticamente 1 •Media y desviación estándar son iguales •Sesgo >0 distribución sesgada a la derecha •Curtosis >3, tiene más agudeza que una normal

126.018

95% Conf idence Interv al f or Median 95% Conf idence Interv al f or Median

53.078

102.444

Seguir la secuencia STAT>Basic Statistics>Display Descriptive Statistics

1-73

Identificación de Modelos • Gráficas Abrir: identificación.mtw

1-74

Identificación de Modelos Four-way Probability Plot for T No censoring

Lognormal

99

99

95 90

95 90

80 70 60 50 40 30 20

80 70 60 50 40 30 20

Percent

Percent

Normal

10

10

5

5

1

1 -100

0

100

200

300

400

500

0.1

1.0

Exponential 99

100.0

1000.0

99 95 90

98

75 60

97

Percent

95

Percent

10.0

Weibull

90 80

40 30 20 10 5

70 60 50

3 2

30 10

1 0

100

200

300

¿Cuál ajusta mejor...?

400

500

0.1

1.0

10.0

100.0

1000.0

1-75

Identificación de Modelos El modelo exponencial

1-76

Identificación de Modelos Overview Plot for T No censoring

Probability Density Function 0.010

Exponential Probability Exponential ML Estimates

99

Mean:

Percent

95 0.005

101.453

Fail. Rate: 9.86E-03 MTBF: 101.453

90 80 70 60 50 40 30 20 10 5 1

0.000 0

100

200

300

400

500

600

0

700

100

Survival Function

200

300

400

500

Hazard Function

1.0 0.00990

0.9 0.8

0.6

Rate

Probability

0.7

0.5 0.4

0.00985

0.3 0.2 0.1 0.0

0.00980 0

100

200

300

400

500

0

100

200

300

400

500

1-77

Ejercicio • Ahora Usted... • Abra los datos en distribución.mtw (los del capítulo 1) y proponga qué modelo de distribución los representa mejor. – – – –

Analice los datos en la columna C5 Obtenga las gráficas Calcule los estadísticos descriptivos Utilice algún procedimiento automatizado para identificación de distribución – proponga una distribución 1-78

Ejercicio Descriptive Statistics Variable: tiempo Anderson-Darling Normality Test A-Squared: P-Value:

0

50

100

150

200

250

300

95% Conf idence Interv al f or Mu

2.346 0.000

Mean StDev Variance Skewness Kurtosis N

98.9320 65.6671 4312.17 1.30399 1.49195 60

Minimum 1st Quartile Median 3rd Quartile Maximum

9.520 49.549 76.642 136.566 302.010

95% Conf idence Interv al f or Mu 81.968 60

70

80

90

100

110

120

95% Conf idence Interv al f or Sigma 55.662

95% Conf idence Interv al f or Median

115.896 80.092

95% Conf idence Interv al f or Median 61.055

98.620

1-79

Ejercicio Four-way Probability Plot for tiempo No censoring

Lognormal

99

99

95 90

95 90

80 70 60 50 40 30 20

80 70 60 50 40 30 20

Percent

Percent

Normal

10

10

5

5

1

1 0

100

200

300

10

100

Exponential

Weibull

99

99 95 90

98

75 60

97

Percent

Percent

95 90 80

40 30 20 10 5

70 60 50

3 2

30 10

1 0

100

200

300

400

10

100

1-80

Ejercicio Overview Plot for tiempo No censoring

Probability Density Function 0.010

Lognormal Probability Lognormal ML Estimates

99 95

Percent

90

0.005

Location: 4.38759

80 70 60 50 40 30 20

Scale: MTBF:

0.66066 100.066

10 5 1

0.000 0

100

200

300

400

500

10

600

Survival Function

100

Hazard Function

1.0

0.015

0.9 0.8

0.6

Rate

Probability

0.7

0.5 0.4

0.010

0.3 0.005

0.2 0.1 0.0 0

100

200

300

400

0

100

200

300

400

MTB reporta la media y la desviación estándar de los logaritmos de los tiempos 1-81

Puntos Clave • Los modelos paramétricos tienen muchas ventajas para modelar situaciones de confiabilidad. • Es necesario asegurar cuál es el modelo más apropiado para modelar • La decisión depende del conocimiento del mecanismo de falla y la forma en que se observa. • Las distribuciones tienen parámetros que le dan ciertas características: forma, escala, localización. • Recuerde siempre confirmar el modelo de distribución a usar y ver que las propiedades correspondan a lo conocido sobre la falla 1-82

3. DEFINICIÓN DE PROYECTOS DE CONFIABILIDAD

1-83

Objetivo Propósitos: • Conocer las herramientas utilizadas en la identificación de proyectos de confiabilidad. •

Asegurar el control del impacto en el sistema bajo estudio, en un proyecto de confiabilidad a través del uso de las herramientas para la identificación de proyectos.

• Aprender de un proyecto real la secuencia e integración de las herramientas para la identificación de proyectos de confiabilidad.

1-84

DMAIC Y Confiabilidad

1-85

Definición Identificar Oportunidades: SCR, Cambio de Proveedor, Costos, Productividad, Comparación Competitiva, 6s Diagrama de Bloques Funcionales de Producto Diagrama de Relaciones de Proceso Identificar Confiabilidad Actual: CTQs de proceso y producto, tiempo de misión, condiciones de ambiente

Establecer Metas de Confiabilidad: Nivel de Confiabilidad R(t), tiempo de misión (t), Nivel de Confianza (1-a) Elaborar Diagramas P de condiciones de operación, ruidos internos y externos Identificación inicial de causas y efectos de falla, AMEF inicial, jerarquizar Xs

Medición

Análisis

Mejora

Objetivo: determinar la Confiabilidad y capacidad actuales

Objetivo: determinar las "X" vitales

Objetivo: determinar los niveles de las "X"" vitales

Sistema de Medición, Calibrado, Lineal, Estable, Gage RyR < 20%

Pruebas Estadísticas: Comparación de Confiabilidad actual contra propuesta: Análisis Paramétrico, Análisis No Paramétrico. Diseño de experimentos para eliminar X's. Regresión de parámetros Observación de tiempos de falla o degradación de Y

Diseño de Experimentos, Superficie de Respuesta, Predicciones, Regresión de Parámetros, Optimización de función

Diseño para Reproducción de la falla Medir Condición actual: 1. Datos de campo, 2. Laboratorio de pruebas, 3. Base de Datos Caracterizar Y, X, t: El CTQ, las causas posibles y el tiempo de falla: media, dispersión, distribución, MTBF, parámetros, h(t), R(t), Z Identificar los parámetros relevantes del ruido ambiental: Máximo, mínimo, media, dispersión, distribución.

Determinar tipo de observación en la confiabilidad: 1. pruebas terminadas a tiempo determinado, 2. Pruebas terminadas a número de fallas determinado 3. Datos por intervalo de tiempo 4. Aceleración de Pruebas por aumento de carga

En pruebas aceleradas: Validar Transformaciones para la regresión del factor acelerante

Corrida de comprobación de la mejor solución. Verificación Estadística

Control AMEF definitivo, Plan de Control, Documentación oficial Entrenamiento del personal involucrado, Documentación ISO, Procedimientos, Auditorías Evaluar niveles de capacidad y metas de confiabilidad comprometidas

Evaluar metas de Confiabilidad y de Capacidad de proceso. Continuar, Modificar o Cancelar Proyecto FIN DEL PROYECTO

1-86

Diagrama de Bloques Funcionales

1-87

¿Qué es un Diagrama de Bloques Funcionales? Un Diagrama de Bloques Funcionales es una representación gráfica de los elementos funcionales de un sistema y sus interconexiones.

1-88

¿Para que utilizar el Diagrama de Bloques Funcionales?  Es el primer paso para desarrollar el modelo del sistema y se utiliza como punto de partida en la realización de un análisis de modo y efecto de falla (AMEF).  Entender la relación que guardan los subsistemas entre sí y el impacto de un cambio o más en el sistema.  Construir gráficamente los elementos funcionales de un sistema y sus interrelaciones, complementar con la misión crítica que corresponde a cada elemento en el sistema.

1-89

Pasos en la construcción de un Diagrama de Bloques Funcionales: • 1. Defina la función del sistema. • 2. Defina los modos de operación del sistema. • 3. Liste los subsistemas (muestre los límites de referencia). • 4. Liste las funciones de los subsistemas (activas y pasivas) para cada modo de operación. • 5. Defina las entradas y salidas de los subsistemas. • 6. Defina la falla crítica de los subsistemas/partes y la interdependencia

1-90

DIAGRAMA DE RELACIONES

1-91

DIAGRAMA DE RELACIONES Muestra las relaciones causa-efecto. De igual importancia, es que el proceso de creación de un diagrama de relaciones ayuda a un grupo en el análisis de los enlaces naturales entre aspectos diferentes de un problema complejo. Cuando usarlo Un tema complejo está siendo analizado por causas. Una iniciativa compleja está siendo implementada. Después de haber generado un diagrama de afinidad, un diagrama de causa-efecto o un diagrama de árbol, para explorar con mayor énfasis las relaciones de las ideas. 1-92

Determinación de Factores de Control y de Ruido

Diagrama-P

1-93

Qué es un Diagrama de Parámetros • Es la forma esquemática en la que se presentan las entradas, variables independientes y salidas del proceso/producto sometido a un cambio tipo “C”, cuya información proviene de un Diagrama de Bloques Funcionales. • El diagrama de parámetros bosqueja en forma sencilla y clara los factores que afectan la salida del diseño del producto/proceso que pueden estar bajo control o no del diseñador/responsable de la iniciativa de confiabilidad

1-94

Para que utilizar el Diagrama de Parámetros:  Para

desarrollar el plan de pruebas de confiabilidad. Proporciona un enfoque disciplinado para la planeación de pruebas.  Para asegurar que el plan de pruebas de confiabilidad incluya las condiciones ambientales aplicables al producto, tal que todos los modos de falla puedan ser entendidos, considerados y cuantificados.  Facilitar la ejecución del AMEF y el diseño de experimentos.

1-95

MATRIZ F A C T O R E S Q U E

C SI O N T R O L O NO

FACTORES QUE DAN LIBERTAD DE ACCION Y POSIBILIDAD DE AHORROS

DE

FACTORES

FACTORES DE CONTROL

FACTORES POR LOS QUE NO VALE LA PENA

FACTORES DE RUIDO

PREOCUPARSE

NO

FACTORES

SI

QUE

AFECTAN EL PROCESO 1-96

Puntos Clave en la definición de Factores de Control y de Ruido 1. Variable de Respuesta: Es una variable observada o medida en un experimento, algunas veces llamada variable dependiente, es la Y. La variable de respuesta es el resultado de un experimento y es denominada como un CTQ o una medida del desempeño del proceso. 2. Factor: algunas veces llamada variable independiente o variable causal, es una variable que es deliberadamente cambiada o modificada en un experimento para observar su impacto en la variable de respuesta. 3. Factor de Control. Un factor de control es aquel que puede ser controlado en la producción regular o un parámetro que puede ser especificado en un diseño. Ejemplo, la temperatura de la soldadura en una máquina de soldar o la dimensión de una parte en un diseño mecánico. 4. Factor de Ruido. Un factor de ruido es aquel que el equipo técnico considera costoso o imposible de controlar en la producción regular. Por ejemplo, las condiciones ambientales; la humedad y temperatura son frecuentemente considerados factores de ruido en los experimentos de mejoramiento de procesos.

1-97

Análisis del Modo y Efecto de la Falla

1-98

Qué es el AMEF Es una estructura para lograr: Identificar las formas en las que un proceso puede fallar por no reunir los requerimientos críticos del cliente Estimar el riesgo de las causas específicas con respecto a estas fallas Evaluar el plan de control actual para prevenir que estas fallas ocurran Dar prioridad a las acciones que deberían efectuarse para mejorar el proceso



Concepto: Identificar las formas en que puede fallar el producto, el proceso o el servicio al proporcionar la función planeada. —Identificar las causas posibles y eliminar las causas —Ubicar los impactos de falla y reducir los efectos 

1-99

AMEF ¿Qué hace? • Jerarquiza los problemas en los que se debe trabajar primero •

Identifica las fallas en los planes de control



Conduce a hacer más preguntas acerca del proceso

•Ayuda a evaluar el riesgo del cambio de proceso • Establece la prioridad de las acciones a ejecutar 1-100

AMEF Es la herramienta clave con que cuenta un equipo para mejorar el proceso de una manera adquisitiva (antes de que ocurra la falla) 

Empleado para dar prioridad a los recursos que aseguran atención a los esfuerzos de mejora del proceso que son benéficos para el cliente 

Usado para documentar los cálculos de riesgo de la terminación de los proyectos y de las mejoras resultantes 

Debe ser un documento dinámico, que está siendo continuamente revisado, corregido y actualizado 

1-101

El Modelo AMEF Prevención

Causa Causa Material o Entrada de Proceso

Detección

Detección

Modo Modode delalaFalla Falla (Defecto) (Defecto) Paso del Proceso

Efecto Efecto Cliente externo o paso del proceso con la corriente

Controles Controles 1-102

Definición Modo de Falla •

El Modo de Falla necesita ser claramente definido en términos de la operación realizada • Ejemplos de Modo de Falla: – – – – – –

distorsión fractura tolerancia excedida circuito abierto corto circuito descalibrado

Usar números en donde sea posible

Definir el Modo de Falla antes de la Prueba

1-103

Mecanismo de Falla • Los

Resultados de las Pruebas estuvieron disponibles para determinar los modos de falla • Los modos de falla primarios son: Alambre abierto y fundido •MLPL describe los mecanismos de la falla MLPL

Mecanismo de la Falla

1) Oxidación del alambre calentado, y disminución del cromado El mecanismo es de degradación, corrosión química

MLPL nos dice cómo fallan los componentes

Ejemplo: Elemento Calorífico MLPL

1-104

“Acelerar” las pruebas •El tiempo para determinar la confiabilidad a veces no es suficiente •Un producto con alta confiabilidad tarda mucho en exhibir las fallas •Es necesario determinar que tipo de carga o esfuerzo ACELERA el modo de falla

1-105

Determinar el Mecanismo del Modo de la Falla a ser Acelerado Para estar seguros de acelerar todos los modos de falla, se necesita usar más de un acelerador ( por ejemplo, voltaje, vibración, temperatura) Seis Sigma / Enfoque Diseño de Experimentos

85 C, 85 RH

Humedad

85 RH

85 C, 75 RH

65 RH 65 C

Temperatura

85 C

1-106

Puntos Clave • Confiabilidad - DMAIC • Diagrama de Bloques Funcionales • Diagrama de Relaciones • Diagrama de Parámetros • AMEF • Modo de Falla • Mecanismo de la Falla 1-107

4. OBSERVACIÓN DE FALLAS

1-108

Objetivo: Presentar alternativas de Análisis en función del Tipo de Datos Propósitos: • •



Clasificar el Tipo de Datos Observados Analizar Datos Agrupados y Datos no Agrupados – Censurados a la izquierda – Censurados a la derecha – Sin Censura – Con Tiempo de Misión establecido – Estimación de Parámetros Interactuar con ReliaSoft´s Weibull++5.0 para el análisis de datos

1-109

Recolección de Datos La Recolección de datos es una parte importante de todo proyecto. Los datos representan datos de vida o datos de tiempo de falla de los productos que hacemos. La exactitud de cualquier predicción es directamente proporcional a la calidad y exactitud de los datos recolectados. 1-110

Tipos de Datos Cuando se examinan datos sobre la vida o duración de un producto debe reconocerse que hay diferentes clases de ellos. En el trabajo regular del control de calidad si se inspecciona una muestra de 10 artículos, se obtendrán 10 observaciones. Tales datos se conocen como datos completos. En pruebas de vida, cuando una muestra de 10 se pone a prueba es muy raro que se obtengan 10 observaciones, porque algunos de los artículos en la muestra pueden no fallar dentro de un periodo razonable de tiempo y la prueba puede detenerse antes de que fallen todas las unidades. Bajo estas circunstancias o cuando se desea un análisis en una etapa intermedia antes de que se termine la prueba, el resultado será: datos incompletos o datos censurados.

Los datos censurados pueden clasificarse en tres tipos: censurado simple Tipo I, censurado simple Tipo II y multicensurados. Es necesario entender que tipo de datos se tienen con el objeto de analizarlos correctamente.

1-111

Censurado simple Tipo I

Tiempo T

La figura muestra las condiciones que generan este tipo de datos. La prueba se detiene en un tiempo T predeterminado. Los datos se llaman de censurado simple porque todos los sobrevivientes se quitan de la prueba al mismo tiempo. Cuando los sobrevivientes tienen diferentes tiempos de sobrevivencia, como sucede bajo ciertas condiciones experimentales o de uso en campo, se dice que los datos son multicensurados.

Los datos de censurado simple Tipo I con frecuencia se refieren como datos censurados por el tiempo o datos truncados por el tiempo.

Unidades de la muestra 1

2 3 4 5 6 = Falla = Sobreviviente

1-112

Censurado simple Tipo II La figura muestra las circunstancias bajo las cuales aparecen este tipo de datos. La prueba es detenida tan pronto como ocurra un número predeterminado de fallas. Todas las unidades sobrevivientes tienen los mismos tiempos de sobrevivencia y son iguales al tiempo de falla de la última falla.

Tiempo Unidades de la muestra

1 2 3 4 5 6

Los datos de censurado simple Tipo II son llamados simplemente datos censurados por falla o datos truncados por falla.

= Falla = Sobreviviente

1-113

Multicensurados Se caracterizan por las unidades sobrevivientes que tienen diferentes tiempos de sobrevivencia. Tales datos pueden aparecer por diferentes situaciones. La Figura muestra un ejemplo. En ella, las unidades 1, 2 y 3 fueron vendidas al cliente 1 y cuando se reportó la falla de la unidad 1, las otras estaban trabajando. Las unidades 4, 5 y 6 fueron vendidas al cliente 2 y cuando se reportó la falla de la unidad 4, las unidades 5 y 6 aun estaban trabajando.

Tiempo Unidades de la 1 muestra 2 3 4 5 6

= Falla = Sobreviviente 1-114

Multicensurados Cont. En la Figura , de seis unidades puestas a prueba tres fallaron en los tiempos mostrados, pero para las otras tres los dispositivos de prueba fallaron antes de que fallaran las unidades. Así las unidades tuvieron que quitarse de la prueba en diferentes tiempos cuando los dispositivos fallaron. Existen muchas otras situaciones en las cuales aparecen los datos multicensurados. Los métodos de análisis para tales datos, así como también para datos de censurado simple, incluirán la información de aquellas unidades que no fallaron porque estaban funcionando en el momento en que tenían que retirarse de la prueba. Tal información agrega usualmente precisión o confianza en los resultados.

Tiempo Unidades de la 1 muestra 2 3 4 5 6

= Falla = Sobreviviente 1-115

Datos por Intervalo La figura muestra donde aparecen los datos por intervalo. Se sabe que ciertas unidades de la muestra fallan en ciertos intervalos de tiempo, su tiempo exacto de falla sigue siendo desconocido. Esto ocurre cuando las muestras son inspeccionadas en tiempos específicos y son observadas sus condiciones. Este tipo de datos proviene tanto de pruebas de campo como de laboratorio.

Tiempo

Unidades de la 1 muestra

2 3 4 5 6

Es necesario aplicar el tipo de análisis correcto para un tipo dado de datos con el objeto de obtener la mayor información posible de este. 1-116

Tipos de Datos Exacto

Tiempos de Falla (Sin Censura)

Intervalo

Tiempos de Falla con Intervalos (Intervalos y Censura Izquierda)

Exacto

Tiempos de Falla con Suspensiones (Censura Derecha)

Todos Fallaron

Datos No Agrupados No Todos Fallaron Intervalo

Tiempos de Falla con Suspensiones e Intervalos (Intervalos y Censura Derecha Izquierda)

Exacto

Tiempos de Falla (Sin Censura)

Intervalo

Tiempos de Falla con Intervalos (Intervalos y Censura Izquierda)

Exacto

Tiempos de Falla con Suspensiones (Censura Derecha)

Todos Fallaron

Datos Agrupados No Todos Fallaron Intervalo

Tiempos de Falla con Suspensiones e Intervalos (Intervalos y Censura Derecha Izquierda)

1-117

Tipos de Datos como se definen en Weibull++5.0 • El tipo de datos afecta el proceso de estimación de la confiabilidad • Es muy importante clasificar correctamente los datos de acuerdo a su tipo: Datos Agrupados. Datos no Agrupados • Datos censurados; utilizan el tiempo para fallar y tiempo de suspensión A la izquierda A la derecha • Datos por Intervalo; el tiempo de falla está basado sobre un intervalo en el que se realiza la inspección 1-118

Sin Censura • Veamos un ejemplo simple, que nos guiará en la situación de Datos Sin Censura. Se realizaron pruebas de confiabilidad a seis unidades y se observaron los siguientes tiempos de falla: 64,46,83,123,105 y 150 horas, nos interesa conocer; • El tipo de distribución que modela su comportamiento. • Estimar los parámetros. • Gráfica de probabilidad

1-119

Censura a la Derecha (ejemplo 2)

•Diez unidades idénticas fueron probadas para determinar su confiabilidad a la misma aplicación y a tres niveles de operación. Seis de esas diez fallaron durante la prueba Tj: 16,34,53,75,93, y 120. • Las cuatro unidades restantes permanecieron operando, este es un claro ejemplo de datos censurados a la derecha o suspendidos, después de 120 horas.Nos interesa determinar los parámetros de la distribución Weibull, su Función de Densidad y la Gráfica de Probabilidad, para su interpretación.

120

tiempo

1-120

Con Censura introduciendo el concepto Tiempo de Misión En ocasiones nos interesa conocer la confiabilidad o la no confiabilidad de unidades sometidas a pruebas para un cierto tiempo de misión. Siendo que el tiempo que se denomina de misión es una decisión de negocio, resulta fundamental saber en que medida los productos que fabricamos satisfacen la decisión de negocio. Utilizando la misma información del ejemplo 2, preguntamos ¿Cuál es la confiabilidad de las unidades para una duración (tiempo) de misión de 226 horas, iniciando el tiempo de misión en el T=0 ? 1-121

Con Censura introduciendo el concepto de Tiempo de Misión con un valor inicial diferente de cero Confiabilidad Condicional

Utilizando los datos del ejemplo 2, calcular la confiabilidad para un tiempo de misión de t = 30 horas, iniciando la misión al tiempo T = 30 horas? ¿Cuál es el tiempo de garantía para lograr una confiabilidad de 85%? T = 30 horas Inicio Tiempo de Misión

t = 30 horas Tiempo de Misión definida por el negocio

1-122

Función que representa la confiabilidad buscada::

R (T  t ) R (T , t )  R (T ) T; tiempo de duración de la misión

t ; tiempo de inicio de la misión

0.7077 ˆ R (30hr ,30hr )   0.8218 0.8612 ˆ (30hr ,30hr )  82.18% R 1-123

Análisis de Datos Agrupados El procedimiento de Análisis de Datos Agrupados se explica a través de un ejercicio. La diferencia reside en decir el número de estados que se presentan para cada tiempo de falla, esta información se registra al realizar las pruebas de confiabilidad. Dependiendo del agrupamiento que se de a los datos será el análisis de los mismos. Los datos se presentan en la siguiente pantalla:

1-124

Estimación Máxima Verosimilitud Una característica es que cada tiempo individual es explícitamente usado en el cálculo de los parámetros, entonces no hay diferencia en la entrada de un grupo de 10 unidades fallando a las 100 horas y 10 entradas individuales de 100 horas. Sin embargo, si hay incertidumbre en conocer cual es el tiempo exacto al que las unidades fallaron, se recomienda utilizar datos por intervalos, ejemplo 10 unidades fallaron a las 100 horas, otras unidades fallaron entre las 100 y las 200 horas, y otras 10 fallaron entre 200 y 300 horas.

1-125

Tabla Resumen

RRX

MLE



2.6885

3.6214



724.3180

810.2044

Los resultados muestran valores de los parámetros muy diferentes, ¿cuáles son las implicaciones en la confiabilidad?

1-126

¿Máxima Verosimilitud o Mínimos cuadrados? • ¿Qué método preferir? • La respuesta es: depende •

Para muestras pequeñas MLE es mejor



RR da una medida del ajuste de los datos a la distribución con el coeficiente de correlación. Un mal ajuste alerta sobre la posibilidad de múltiples modos de falla. Esto se puede identificar en la gráfica lineal, cosa que en MLE es más difícil por la forma de graficar una solución

1-127

Ejemplo 4

Datos Agrupados, enfatizando su Distribución y Función

Fue probada la confiabilidad de 20 unidades, los tiempos de falla son: 7 unidades fallaron a las 100 horas, 5 unidades fallaron a las 200 horas, 3 unidades fallaron a las 300 horas, 2 unidades fallaron a las 400 horas, una unidad falló a las 500 horas, y 2 unidades fallaron a las 600 horas. • Utilizar la distribución exponencial y estimar sus parámetros. • Generar la Gráfica de Probabilidad Exponencial. • Generar la Gráfica de Confiabilidad contra Tiempo de Falla • Obtener la Gráfica de la Función de Densidad de Probabilidad • Obtener la Gráfica que relaciona la Tasa de Falla contra el Tiempo 1-128

Parámetros de la Distribución Exponencial

1-129

Gráfica de Probabilidad Exponencial

Confiabilidad contra tiempo

1-130

Función de Densidad de Probabilidad Lambda = 0.0058 Gamma = 72.68

Gráfica de Tasa de Fallas contra Tiempo

1-131

Tiempo de falla asumiendo que los datos se aproximan a una Distribución Normal

Ejemplo 5 Se probaron seis unidades y los tiempos de falla fueron: 11,260; 12,080; 12,125; 12,825; 13,550 y 14,760 horas, nos interesa conocer: • Los parámetros de la Distribución y en particular utilizar como el método de estimación de los Parámetros Regresión del Rango sobre la X • Gráfica de Probabilidad para los datos. • Gráfica de la Función de Densidad de Probabilidad

1-132

Pasos en la solución del ejemplo caracterizado por una Distribución Normal 1. Seleccionar el tipo de datos

2. Vaciar los datos

1-133

3. Seleccionar la Distribución Normal y regresión del Rango sobre la X para estimación de los parámetros

4. Función de Densidad de la Normal media = 12751.67 sigma= 1348.27 1-134

5. Gráfica de Probabilidad Normal incluyendo el intervalo de confianza del 90%

1-135

Datos con Censura Ejemplo 6 Usando los datos del ejemplo 5 contestar las siguientes preguntas: 1. Determinar la confiabilidad para un tiempo de misión de 11,000 horas y un intervalo de confianza del 90% sobre su confiabilidad. 2. Determinar el tiempo promedio entre falla para un intervalo de confianza del 90% sobre el MTBF

1-136

Respuesta pregunta 1

Tenemos la estimación puntual de la confiabilidad: R(t=11,000) = 0.9031 Y la estimación de un intervalo de confianza de 90% de confianza: P(0.5828
Respuesta pregunta 2 Requerimientos

Respuesta Tenemos la estimación puntual de la vida media: Vida Media= 12,751.7 Y la estimación de un intervalo de confianza de 90% de confianza: P(11,846.1<Media<13,657.2) = 0.90

1-138

Datos por intervalo – Considere los datos por intervalo dados a continuación Número en Estado 5 16 12 18 18 2 6 17 73

Última inspección 0.00 6.12 19.92 29.64 35.40 39.72 45.24 52.32 63.48

Estado F F F F F F F F S

Tiempo final de estado 6.12 19.92 29.64 35.40 39.72 45.24 52.32 63.48 63.48

Determine los parámetros de una Weibull de 2 parámetros usando MLE y obtenga el gráfico de la función de logaritmo de verosimilitud 1-139

Beta=1.4854 Eta= 71.6904 1-140

Ventajas de los Datos con Censura • •

• • •

Es el esquema de datos más común en la práctica. Representan situaciones reales de confiabilidad en donde no todas las unidades fallan, o bien no se conocen los tiempos para fallar de todas las unidades. Censura a la Derecha son datos de vida de unidades que no fallaron en el tiempo de misión establecido. Intervalo de Datos Censurados, se refiere a datos en donde existe la incertidumbre del tiempo exacto en que las unidades fallaron. Censura a la Izquierda parecido al intervalo, en ellos el tiempo de falla no se conoce exactamente sino hasta que se inspecciona, la falla podría ocurrir entre 0 y 100 horas.

1-141

Puntos Clave • Tipo de Datos Observados • Datos Agrupados y Datos no Agrupados – Censurados a la izquierda – Censurados a la derecha – Sin Censura • Parámetros de las Distribuciones de Probabilidad: • - Weibull • - Exponencial • - Normal • - Lognormal

1-142

Puntos Clave • Métodos de Estimación de Parámetros: - Regresión del Rango sobre X - Regresión del Rango sobre Y - Método de Estimación de Máxima Verosimilitud •Gráficas Especiales - Función de Distribución Acumulada - Gráfica de Probabilidad - Función de Densidad de Probabilidad - Tasa de Falla contra tiempo - Confiabilidad contra tiempo • Intervalos de confianza para la confiabilidad

1-143

5. CÁLCULOS Y PRUEBAS DE CONFIABILIDAD

1-144

• Agenda – – – –

Introducción Métodos No-paramétricos Métodos Paramétricos Planear Pruebas

1-145

- Introducción

• Tópicos cubiertos – Pruebas de Demostración de Confiabilidad • Resultados de pruebas • Planeación de pruebas

– Pruebas No-Paramétricas • Prueba de Rachas exitosas • Prueba de Porcentaje Superviviente • Prueba de Mann-Whitney

– Pruebas Paramétricas • Caso Exponencial • Caso Weibull

– Planear Pruebas • Caso Exponencial • Weibull sin fallas 1-146

• Tópicos no cubiertos

- Introducción

– Pruebas de Crecimiento de Confiabilidad • v.g., Modelos Duane, Modelos Gompertz

– Pruebas Aceleradas • v.g., HALT, HASS, Modelos Arrhenius

– Muchos otros métodos no-paramétricos • v.g., Prueba de Rachas Wald-Wolfowitz, Pruebas Binomial-Pearson

– Muchos otros métodos paramétricos • v.g. Pruebas de Muerte Súbita, SPRT’s 1-147

• No-paramétricas

- No-paramétricas

– Usadas cuando la distribución subyacente de los tiempos para falla no se conoce • No se conocen los parámetros de la distribución o pueden estar supuestos • Insuficientes unidades de prueba disponibles para determinar la distribución subyacente

– No tienen una potencia tan alta para hacer una decisión correcta como una prueba paramétrica. • La potencia aumenta con el tamaño de la muestra • Pudiera ser tan potente si los datos no siguen una distribución conocida

1-148

• Prueba de Rachas Exitosas

- No-paramétricas

– La duración de la prueba está predeterminada – La duración de la prueba debe igualar a la duración de la misión • El término exitoso de la prueba proporciona una confiabilidad para esa duración de prueba. • El valor de la confiabilidad no puede ser determinado para cualquier otra duración – Los métodos presentados después intentan atender esto

– Requiere que todas las unidades sobrevivan para la duración (no se permiten fallas) • Todas las unidades son exitosas, de ahí el nombre de la prueba 1-149

• Prueba de Rachas Exitosas

- No-paramétricas

– El límite inferior de confianza, de un solo lado, para la confiabilidad es • RL1(t) = (1-CL)1/N – RL1(t) = límite inferior de confianza, para intervalo de un solo lado, para la confiabilidad de una misión de duración t – CL = nivel de confianza (en decimales, esto es, 0.90 y no 90 para un 90% de confianza) – N = tamaño de muestra » número de unidades probadas para una duración t sin falla » número de misiones exitosas terminadas por una unidad 1-150

- No-paramétricas

• Prueba de Rachas Exitosas – Puede negociar RL1(t), CL, y N • Para un CL dado, RL1(t) aumenta con el tamaño de la muestra

– Dado un requerimiento de confiabilidad para algún tiempo y nivel de confianza especificados, la ecuación se puede arreglar para determinar el tamaño de muestra requerido – N  ln(1 CL) ln RL1 t   1-151

• Prueba de Rachas Exitosas

- No-paramétricas

– Ejemplo • 10 tuercas fueron puestas en una prueba de vida simulando 10 años de servicio. Todas las diez tuercas completaron la prueba sin fallas. ¿Cuál es el límite inferior de 90% de confianza unilateral para la confiabilidad de estas unidades?.

– Solución • RL1(t) = (1-CL)1/N – N = 10 – CL = 0.90 – t = 10 años

• RL1(10 años) = (1-0.90)

En EXCEL Archivo Cap 5.xls LÍMITE INFERIOR UNILATERAL DE CONFIABILIDAD N= 10 piezas que completan prueba sin falla CL = 0.9 valor de confianza t= 10 años 1/10 RL1 = 0.79432823 Límite inferior unilateral de confiabilidad

= 0.794 o 79%

– ¿Qué puede decirse acerca de la confiabilidad para 20 años basándose en este análisis? 1-152

• Prueba de Rachas Exitosas

- No-paramétricas

– Ejemplo (continua) • El requerimiento de confiabilidad para la tuerca realmente fue confiabilidad de 90% en 10 años de servicio con 90% de confianza. ¿Cuántas unidades necesitan completar exitosamente la prueba para demostrar el requerimiento?

– Solución

N

ln(1 CL ) ln RL1 t  

– RL1(10 años) = 90%, ó 0.90 – CL = 90%, ó 0.90

N

ln(1  CL ) ln(1  0.90 )   21.85 o 22 ln R L1  t   ln(0.90 )

1-153

• Prueba de Porcentaje-Superviviente

- No-paramétricas

– La duración de la prueba está predeterminada – La duración de la prueba deberá igualar a la duración de la misión • Completar exitosamente la prueba provee una confiabilidad para esa duración de la prueba • El valor de la Confiabilidad no puede ser determinado para cualquier otra duración – Los métodos presentados después tratarán de atender esto.

– No requiere tiempos de falla, sólo el número de fallas ocurrido • Las unidades falladas no se reemplazan

1-154

• Prueba de Porcentaje-Superviviente

- No-paramétricas

– Estimado de confiabilidad para una prueba cuya duración está predeterminada Nr para r > 0 – El límite N inferior de confianza, de un solo lado, para la R 

confiabilidad de una prueba cuya duración está predeterminada

donde F = punto de porcentaje superior de la distribución F tal que el área a la izquierda con m y n grados de libertad = (1-)

RL1 

1

r 1  1  F  Nr  1;2r 2;2N2r

1-155

• Prueba de Porcentaje-Superviviente- No-paramétricas Ejemplo para una prueba cuya duración está predeterminada • Dado que 20 motores se probaron 500 horas y 2 motores fallaron durante esta prueba, ¿Cuál es el límite inferior de confianza 90%, de un solo lado, sobre la confiabilidad? RL1 

RL1 

1

r 1  1  F  Nr  1;2r2;2N2r 1 2 1  1  F  20  2  0.90;2(2)2;2(20)2(2)



1 1   0.755 3 1325 .  1    195 .   18 

LÍMITE INFERIOR UNILATERAL DE CONFIABILIDAD (PRUEBA TERMINADA POR TIEMPO) N= 20 piezas que completan prueba sin falla (1 - ) = 0.9 valor de confianza r= 2 número de piezas falladas F(1-;2r+2;N-2r) = 1.94454941 Percentil de distrib. F tal que el área a la izquierda = (1-) t= 500 horas RL1 = 0.75523478 Límite inferior unilateral de confiabilidad Rmedia =

0.9

Encontrada en tabla F

En EXCEL Archivo Cap 5.xls

1-156

• Prueba de Porcentaje-Superviviente

- No-paramétricas

– Ejemplo para una prueba cuya duración está predeterminada (continuación) • ¿Cuál sería el límite inferior de confianza 90%, de un solo lado, sobre la confiabilidad si no se hubieran observado fallas en esta prueba? RL1 

RL1 

1

r 1  1  F  Nr  1;2r2;2N2r 1 0 1  1  F  20  0  0.90;2(0)2;2(20)2(0)



1 1   0.891 1 . 1    2.44 1122  20 

Encontrada en tabla F

1-157

- No-paramétricas

• Prueba de Porcentaje-Superviviente – Estimado de confiabilidad para una prueba terminada al momento de ocurrir la r-ésima falla

R 

Nr N

para r > 0

– El límite inferior de confianza, de un solo lado, para la confiabilidad de una prueba terminada al momento de ocurrir la r-ésima falla

• donde F = punto de porcentaje superior de la distribución F tal que el área a 1 RL1  con m y n grados de libertad = (1-) la izquierda r  1  F  Nr  1;2r;2N2r

1-158

• Prueba de Porcentaje-Superviviente - No-paramétricas – Ejemplo para una prueba terminada al ocurrir la r-ésima falla • Dados 20 motores como antes, probados por 500 horas, pero esta vez la prueba se detiene cuando el tercer motor falla a las 500 horas, ¿Cuál es el límite inferior de confianza de 90%, de un solo lado, para la confiabilidad? RL1 

RL1 

En EXCEL Archivo Cap 5.xls

1

r  1  F  Nr  1;2r;2N2r 1 3  1  F  20  3  0.90;2(3);2(20)2(3)



1 1   0.743 3 1346 .  1   (196 . )  17 

LÍMITE INFERIOR UNILATERAL DE CONFIABILIDAD (PRUEBA TERMINADA A FALLA) N= 20 piezas que completan prueba sin falla (1 - ) = 0.9 valor de confianza r= 3 número de piezas falladas F(1-;2r+2;N-2r) = 1.95501215 Percentil de distrib. F tal que el área a la izquierda = (1-) t= 500 horas RL1 = 0.74349324 Límite inferior unilateral de confiabilidad

1-159

• Prueba de Mann-Whitney

- No-paramétricas

– Usada para determinar si dos muestras son significativamente diferentes • Supone que las distribuciones subyacentes de tiempo para falla difieren sólo en sus medias

– No se requieren los tiempos exactos de falla – Sólo se necesita saber el orden en que la muestra combinada falló – No requiere tamaños de muestra iguales

• Muchas pruebas de comparación no-paramétricas requieren observaciones apareadas o tamaños de muestra iguales

1-160

• Prueba de Mann-Whitney

- No-paramétricas

– Ejemplo • El mismo componente se surte por dos manufactureros diferentes, llamados A y B. Se obtuvieron 8 componentes de A y 10 de B y todos los 18 se pusieron en una prueba de confiabilidad (los resultados están abajo). ¿Hay una diferencia entre los manufactureros en un nivel de confianza de 95%? Ciclos al

Ciclos al

Fallar-

Fallar-

Mfr A

Mfr B

865 919 894 840 899 787 875 831

884 905 914 835 942 878 922 887 858 896

HO : A  B H1 : A  B

Abrir el archivo dosmfr.MTW 1-161

- No-paramétricas

• Prueba de Mann-Whitney

1-162

- No-paramétricas

• Prueba de Mann-Whitney Mann­Whitney Confidence Interval and Test Mfr A      N =   8     Median =      870.00 Mfr B      N =  10     Median =      891.50 Point estimate for ETA1­ETA2 is      ­23.00 95.4 Percent CI for ETA1­ETA2 is (­66.99,12.00) W = 60.0 Test of ETA1 = ETA2  vs  ETA1 not = ETA2 is significant at 0.1684 Cannot reject at alpha = 0.05

1-163

• Prueba de Mann-Whitney

- No-paramétricas

– Revisión del procedimiento • Obtenga 2 muestras y póngalas en una prueba de confiabilidad • Registre los tiempos de falla o al menos el orden de falla • Capture las dos muestras en dos columnas en una hoja de datos Minitab • Siga la secuencia Stat>Nonparametrics>Mann-Whitney • Señale la primera columna como la primera muestra • Seleccione la segunda columna como la segunda muestra • Fije el nivel de confianza deseado para la prueba • Establezca si la hipótesis alternativa es no igual , mayor que, menor que • Marque OK • En la ventana de Sesión tiene los resultados: – – – –

La prueba de hipótesis declarada El intervalo de confianza de la diferencia de las medianas el valor p un mensaje que declara si se puede rechazar o no la Hipótesis nula con 1-164 alfa de 5%

• Resumen No-paramétrico

- No-paramétricas

– Prueba de Rachas Exitosas • Usado para obtener un límite de confianza inferior unilateral sobre la confiabilidad • El tamaño de muestra N debe ser probado el tiempo de duración de la misión sin fallas – Prueba de Porcentaje-Superviviente • Usado para obtener un límite de confianza inferior, unilateral de la confiabilidad • El tamaño de muestra N probado para la duración de la misión con fallas permitidas • Los tiempos de falla no se necesitan conocer, sólo el número de fallas – Prueba de Mann-Whitney • Usada para comparar la confiabilidad de dos muestras • Permite tamaños de muestra desiguales • Todas las unidades probadas hasta fallar; necesita sólo el orden de las fallas

1-165

• Paramétricas

- Paramétricas

– Usadas cuando la distribución subyacente de los tiempos para fallar se conoce o puede ser supuesta • Datos de prueba previos • Parámetros de industria aceptados (v.g., MIL-HDBK-217) • Conocimiento Ingenieril del mecanismo de falla

– Tiene más poder para hacer una decisión correcta que las pruebas no-paramétricas • Puede ser más incorrecta si la distribución verdadera es diferente que la distribución, o los parámetros de distribución supuestos.

– Rinde información más precisa que los métodos noparamétricos • Los intervalos de confianza son más amplios usando noparamétricas

– Permite extrapolar fuera del rango de los datos

1-166

- Paramétricas

• Dos distribuciones cubiertas – Exponencial – Weibull Estas dos tienen más aplicación a nuestro negocio.

1-167

- Paramétricas

• Pruebas Exponenciales – Terminadas por Tiempo, con y sin reemplazos • La prueba se detiene cuando td horas (ciclos) han pasado y y no hay falla coincidente con td » Estimación de MTBF » Límites de Confianza de MTBF

– Terminada por Fallas, con y sin reemplazos • La prueba se detiene cuando la falla résima ocurre » Estimación de MTBF » Límites de confianza de MTBF

1-168

• Pruebas Exponenciales

- Paramétricas

– Definiciones • = tasa de falla • MTBF = tiempo medio entre fallas (mean time between failures) = 1/  • m = estimado de MTBF • N = tamaño de muestra • td = duración de prueba • Ta = horas de prueba acumuladas = Ntd • r = número de fallas • CL = nivel de confianza = 1 -  – donde  es el riesgo de hacer una decisión equivocada

1-169

- Paramétricas

• Exponencial – Pruebas terminadas por tiempo sin reemplazo • Estimado de MTBF

r

 T  (N  r ) td

Tconfianza, a i  1 i unilateral, de MTBF, m L1 • Límite inferior de m  r

r

¿Por qué inferior, unilateral?

m L1 

2 rm 2 Ta   2 ; 2 r  2  2 ; 2 r  2

1-170

- Paramétricas

• Exponencial

– Pruebas terminadas por tiempo sin remplazo • Ejemplo: Diez unidades se pusieron a prueba por 1500 horas. Las fallas ocurrieron a las 234 horas, 776, horas y 1078 horas. Las restantes 7 continuaron hasta las 1500 horas sin fallar. ¿Cuál es la estimación de m y un límite inferior de 95% de confianza unilateral de m?.¿Cuánto es el estimado de la confiabilidad para una misión de 500 horas? ¿Cuál es el límite inferior unilateral de 95% de confianza para una misión de 500 horas? r

Ta m   r

m L1 

 Ti  (N  r )td i1

2rm  2;2r  2

r



2 Ta

 2;2r  2





234  776 1078  (10  3)1500 12588   4196 3 3

2 12588   20.05;2( 3 ) 2



25176  1624 15.507

De tabla

1-171

• Exponencial

- Paramétricas

– Pruebas terminadas por tiempo sin remplazo • Ejemplo (continua): ¿Cuánto es el estimado de confiabilidad para una misión de 500 horas? ¿Cuál es el límite inferior unilateral de 95% de confianza para una misión de 500 horas? • El estimado de R(t) está asociado con el estimado de MTBF, y el límite inferior de confianza de R(t) está asociado con el límite inferior de confianza de MTBF – R(t) = exp(-t/m) = exp(-500/4196) = 0.888 – RL1(t) = exp(-t/mL1) = exp(-500/1624) = 0.735

Estamos 95% confiados que la confiabilidad para estas unidades excede 73.5% para una misión de 500 horas

1-172

Abra tsinr.wdf

•Exponencial pruebas terminadas por tiempo sin reemplazo

•Marque distribución exponencial con un parámetro •Elija MLE, estimación de máxima verosimilitud

Marque el botón de cálculo de parámetros Señale el botón de la “Calculadora” 1-173

•Exponencial pruebas terminadas por tiempo sin reemplazo

1

2

•Aparece la Calculadora •Marcar Option, Other Calculations

•Deje marcado: Show Lower Sided

3

•Regrese a Basic Calculations

Señale: Show Confidence Bounds

4

•Marque Show Mean Life

•0.95 en Confidence Level •Marque Calculate 1-174

•Exponencial pruebas terminadas por tiempo sin reemplazo La media se estima en 4196, con un límite inferior unilateral de 1622.9

•Ahora marque Std Prob Calculations •Escriba en Mission End Time: 500

Señalando en Calculate se obtiene una R(t) = 0.8877 y RL1(t) = 0.7349 1-175

- Paramétricas

• Exponencial Terminadas por Tiempo m = Ta/r = Ntd/r

con reemplazo m L1 

2rm  2 ;2r  2



Terminadas por Fallas m = Ta/r = Ntd/r

2 Ta 2  ; 2r  2

mL1 

2 Ta

2  ; 2r

r

sin reemplazo

Ta m   r m L1 

 Ti  (N  r )td i1

2rm  2 ;2r  2

r 

2 Ta

 2;2r  2

r

Ta m   r mL1 

 Ti  (N  r )td i1

r

2 Ta

2  ; 2r

En cualquier caso, las estimaciones se basan en las horas totales acumuladas y el número de fallas observadas 1-176

- Paramétricas

• Exponencial – Pruebas terminadas por tiempo con remplazo

• Ejemplo: Diez unidades se pusieron a prueba por 1500 horas. Las fallas ocurrieron a las 234 horas, 776, horas y 1078 horas. Las fallas fueron reemplazadas con unidades idénticas. Las restantes 7 continuaron hasta las 1500 horas sin fallar. ¿Cuál es la estimación de m y un límite inferior de 95% de confianza unilateral de m?.¿Cuánto es el estimado de la confiabilidad para una misión de 500 horas? ¿Cuál es el límite inferior unilateral de 95% de confianza para una misión de 500 horas? • Estimación de MTBF – m = Ntd/r = Ta/r

2rmde MTBF, 2Ta m L1 • límite inferior, unilateral de confianza mL1 

 2 ;2r 2



 2 ;2r 2

1-177

• Exponencial

- Paramétricas

– Pruebas terminadas por tiempo con remplazo • Ejemplo: (continua) • Estimación de MTBF – m = Ntd/r = Ta/r = (10)(1500)/3 = 5000 horas

• límite inferior, unilateral de confianza de MTBF, mL1

m L1 

2Ta 2rm 2(15000 )    1935 horas 2 2 15 . 507   ;2 r  2   ; 2 r  2

donde 2;2r+2 = 20.05;2(3)+2 = 15.507

Puedeverificarse verificarseen entconr.wdf tconr.wdf Puede 1-178

• Exponencial

- Paramétricas

– Pruebas terminadas por tiempo con reemplazo • Ejemplo (continuación): ¿Cuánto es el estimado de confiabilidad para una misión de 500 horas? ¿Cuál es el límite inferior unilateral de 95% de confianza para una misión de 500 horas? • El estimado de R(t) está asociado con el estimado de MTBF y el límite inferior de confianza de R(t) está asociado con el límite inferior de confianza de MTBF • R(t) = exp(-t/m) = exp(-500/5000) = 0.905 • RL1(t) = exp(-t/mL1) = exp(-500/1935) = 0.772

Hay una oportunidad de demostrar mayor confiabilidad si las unidades falladas son reemplazadas

1-179

• Exponencial

- Paramétricas

– Caso especial cuando no se observan fallas • m = Ta/r = Ta/0 = ? • No puede estimarse MTBF o la confiabilidad correspondiente • Puede calcular un límite inferior, unilateral, de confianza de MTBF

2rm 2 Ta unilateral 2 Ta de confianza 2 Ta Ta confiabilidad • Puede obtener de mL1 un 2límite inferior,    2 2 2 RL1(t) = exp(-t/mL1);2r 2  ;2r 2  ;2(0)2  ;2 ln(1 CL )

Consejo: Si  = 0.50, se obtuvo un estimado

1-180

• Exponencial

- Paramétricas

– Caso especial cuando no se observan fallas • Ejemplo: Diez unidades se pusieron a prueba por 1500 horas.. Todas completaron la prueba sin falla. ¿Cuál es la estimación de m y un límite inferior de 95% de confianza unilateral de m?.¿Cuánto es el estimado de la confiabilidad para una misión de 500 horas? ¿Cuál es el límite inferior unilateral de 95% de confianza para una misión de 500 horas? • Aquí podemos usar CL = 50% para obtener un estimado y un CL = 95% para obtener los límites de confianza inferiores unilaterales

1-181

• Exponencial

- Paramétricas

– Caso especial cuando no se observan fallas • Ejemplo (continuación): Para estimar, use el límite inferior unilateral de confianza de MTBF, mL1, con CL = 0.50 mL1 

mL1 

2rm  2 ;2r 2



2Ta

 2 ;2r 2



2Ta

 2 ;2(0)2

10 1500  21640 ln(1 0.50)



2Ta Ta  ln(1 CL)  2 ;2

sin fallas

Puede Puede verificarseen en verificarse tsinf.wdf tsinf.wdf 1-182

• Exponencial

- Paramétricas

– Caso especial cuando no se observan fallas • Ejemplo (continuación): Para obtener el límite inferior, de confianza unilateral de confianza de MTBF, mL1, con CL = 0.95 mL1 

mL1 

2rm  2 ;2r 2



2Ta

 2 ;2r 2



2Ta

 2 ;2(0)2



2Ta Ta  ln(1 CL)  2 ;2

10 1500  5007 ln(1 0.95)

1-183

• Exponencial

- Paramétricas

– Caso especial cuando no se observan fallas • Ejemplo (continuación): Para estimar la confiabilidad y el límite inferior, unilateral de confianza de la confiabilidad use el m L1 apropiado – Para estimar, RL1(t) = exp(-t/mL1) = exp(-500/21640) = 0.977, o estamos 50% confiados que la confiabilidad es no menor de 0.977 para 500 horas de misión – Para el límite inferior, unilateral de confianza , RL1(t) = exp(-t/mL1) = exp(-500/5007) = 0.905, o estamos 95% confiados que la confiabilidad no es menor de 0.905 para 500 horas de misión

1-184

- Paramétricas

• Dos distribuciones cubiertas Hemos visto la – Distribución Exponencial

Ahora, cubriremos la – Distribución Weibull Estas dos tienen la mayor aplicación en nuestro negocio

1-185

• Distribución Weibull

- Paramétricas

– mientras la pdf exponencial modela las características de vida de los sistemas, la Weibull modela las características de vida de componentes y partes – modela fatiga y ciclos de falla de sólidos – muy adecuado para datos de vida – la pdf Weibull es una distribución de los elementos más débiles de una muestra

– muy flexible y puede tomar muchas formas diferentes 1-186

• Weibull

- Paramétricas

– Caso especial cuando se observaron pocas o ninguna falla • Es necesario suponer una Pendiente Weibull, , para obtener un estimador de la vida característica,  – Aproximada de datos similares – Por juicio de ingeniería requiriendo conocimiento del mecanismo de falla v.g., » fatiga de ciclos bajos y corrosión típicamente tienen una pendiente Weibull de 1 <  < 2 » fatiga de ciclos altos y mecanismos de desgaste rápido típicamente tienen una pendiente Weibull 2 <  < 5

• Deben realizarse análisis con varias pendientes para determinar la sensibilidad al supuesto de pendiente

1-187

- Paramétricas

• Weibull

– Caso especial cuando se observaron pocas o ninguna falla • El límite inferior, de confianza unilateral de la Vida Característica es 1  N   2 Ti         2i1    ;2r2   

• Si no hay fallas, entonces

1 

  Nt d     ln( 1  CL )  

Consejo: Si  = 0.50, se obtuvo un estimado 1-188

• Weibull

- Paramétricas

– Caso especial cuando se observaron pocas o ninguna falla • Para obtener un límite inferior, unilateral de confianza de la confiabilidad – RL1(t) = exp{-(t / L1 ) pendiente supuesta

1-189

• Weibull

- Paramétricas

– Caso especial cuando se observaron pocas o ninguna falla • Ejemplo: Diez unidades se pusieron a prueba por 1500 horas. Todas completaron la prueba sin fallar. Suponiendo que el tiempo de falla para estas unidades sigue una distribución Weibull con pendiente  = 1.5, ¿Cuál es el límite inferior unilateral de 95% de confianza de ? ¿ Cuál es el límite inferior unilateral de 95% de confianza de la confiabilidad para una misión de 500 horas? Nt d

1 

1 . ) 15

 (10)(1500  L1        ln( 1  CL )  ln( 1  0 . 95 )     15 .

 3350

RL1(t) = exp{-(t / L1 )} = exp{-(500/3350)1.5} = 0.943 1-190

• Weibull

- Paramétricas

– Caso especial cuando se observaron pocas o ninguna falla •Abrir el archivo tsinf.wdf •Pida el análisis Weibull para dos parámetros

1-191

- Paramétricas

• Weibull

– Caso especial cuando se observaron pocas o ninguna falla • Ejemplo (continuación): ¿Cuánta influencia tiene el supuesto de la pendiente? • Supongamos una pendiente de 1.25 1 

1 . . (10)(1500125 ) 125

  Nt d L1        ln( 1  CL )  ln( 1  0 . 95 )    

 3934

RL1(t) = exp{-(t / L1 )} = exp{-(500/3934)1.25} = 0.927

1-192

- Paramétricas

• Weibull

– Caso especial cuando se observaron pocas o ninguna falla • Ejemplo (continuación): ¿Cuánta influencia tiene el supuesto de la pendiente? • Supongamos una pendiente de 1.75 

1 

1 . ) 175

 (10)(1500  Nt d L1        ln( 1  CL )  ln( 1  0 . 95 )     175 .

 2987

RL1(t) = exp{-(t / L1 )} = exp{-(500/2987)1.75} = 0.957

1-193

- Paramétricas

• Weibull

– Caso especial cuando se observaron pocas o ninguna falla • Ejemplo (continuación): ¿Cuánta influencia tiene el supuesto de la pendiente(resumen)? RL1(500) =1

0.905

 = 1.25

0.927

= 1.5

0.943

= 1.75

0.957

 = 1 es exponencial, más conservador

}

No mucha influencia en este caso

Cuando no se observan fallas, se da más potencia si se puede suponer una pendiente de Weibull > 1

1-194

- Paramétricas

• Weibull

– Caso especial cuando se observaron pocas o ninguna falla • Ejemplo (continuación): ¿Cuánta influencia tiene el supuesto de la pendiente? ¿Qué pasa si yo estimo exageradamente la pendiente Weibull, y supongo una pendiente de 3? 

1 

3

1 )3

  Nt d (10)(1500 L1        2242  ln(1 CL )   ln(1 0.95) 

RL1(t) = exp{-(t / L1 )} = exp{-(500/2242)3} = 0.989

Necesita justificarse el supuesto de la pendiente Weibull, ya que un supuesto de pendiente alta puede influir fuertemente los resultados

1-195

• Planear Pruebas para la Exponencial

- Planear Pruebas

– Use la meta de confiabilidad, Rg, igual a R L1 • Si RL1 = Rg, podemos estar CL% seguros que la R real será al menos Rg

– Necesita determinar Ta, r, y N tales que R L1 = Rg en el CL escogido – Recuerde, R = exp(-t/MTBF) • Dado Rg, MTBFg puede ser determinado

1-196

• Planear Pruebas para la Exponencial

- Planear Pruebas

– MTBFg está determinado por • Rg = exp(-t/MTBFg) • MTBFg = -t/ln(Rg)

Ahora, tenemos el requerimiento en una forma que podemos usar para determinar el tiempo de prueba y el número permisible de fallas para una prueba cuya duración es predeterminada mL1  MTBFg 

2rm  2 ;2r2

MTBFg(  2 ;2r2 ) Ta  2



2Ta

 2 ;2r2

1-197

• Planear Pruebas para la Exponencial

- Planear Pruebas

– Si no están permitidas las fallas mL1  MTBFg 

2rm  2 ;2r 2



2Ta

 2;2r 2



2Ta

 2 ;2(0)2



2Ta Ta  ln(1 CL )  2 ;2

Ta  MTBFg{ln(1 CL )}

– Permite la negociación entre tamaño de muestra y duración de la prueba para lograr una confiabilidad dada a una confianza dada

1-198

- Planear Pruebas

• Planear Pruebas para la Exponencial – si no se permiten fallas • Ejemplo: El requerimiento de confiabilidad para una unidad es 99% confiable para una misión de 500 horas con 95% de confianza (inferior, unilateral). Dado que no se permiten fallas, ¿Cuántas unidades debo de probar por cuanto tiempo para lograr este requerimiento? • MTBFg se determina por » Rg = exp(-t/MTBFg) » MTBFg = -t/ln(Rg) » MTBFg = -500/ln(0.99) = 49750

1-199

• Planear Pruebas para la Exponencial

- Planear Pruebas

– si no se permiten fallas • Ejemplo (continuación): mL1  MTBFg 

2rm  2;2r 2



2Ta

 2 ;2r 2



2Ta

 2 ;2(0)2



2Ta Ta  ln(1CL )  2 ;2

Ta  MTBFg{ln(1CL)}  49750{ln(1 0.95)}  149036 • Entonces Ntd = 149036, o N = 10 unidades cada una probada a 14904 horas sin fallas logrará este requerimiento

• N = 20 probadas por 7452 horas sin fallas logrará también este requerimiento

1-200

• Planear Pruebas para la Exponencial

- Planear Pruebas

– si no se permiten fallas • Ejemplo (continuación): Si estamos limitados en el número de unidades que podemos probar (debido a la disponibilidad de lugar, costo o disponibilidad unitario, etc.) a N = 8, ¿Cuánto debe correrse sin fallas para alcanzar la meta de confiabilidad? – Ta = Ntd = 149036 » donde N = 8 – td = 18630

1-201

• Planear Pruebas para la Exponencial

- Planear Pruebas

– Si se permite una falla • Ejemplo (continuación): Qué pasa si permitimos una falla durante la prueba y esta es remplazada. ¿Cuánto debe durar la prueba?

mL1  MTBFg 

2

2rm  2;2r 2



2Ta

 2 ;2r 2

obtenido de tabla

2

49750 (  ;220 49750(9.podemos 488) • Entonces, MTBFg 0.05;2(1)disponibles 2) de( prueba r 2 )lugares Ta  si tenemos    236014 poner 20 unidades2 en prueba. 19 deben 2 de ir 11800 horas 2 sin fallas. Si ocurre una falla y es reemplazada inmediatamente, el reemplazo debe terminar la prueba sin falla.

1-202

• Planear Pruebas para la Exponencial

- Planear Pruebas

– Similarmente, planes de prueba pueden ser determinados para todos los esquemas de prueba exponenciales – Una buena referencia es Reliability & Life Testing Handbook Volume I, Kececioglu, pp. 133-265 – Algunos de estos planes de prueba han sido tabulados y pueden ser hallados en MIL-HDBK 781

1-203

• Planear Pruebas para la Weibull sin Fallar

- Planear Pruebas

– Debe ser una prueba de demostración, no una prueba de crecimiento • Las pruebas de crecimiento deben tener fallas

– Necesario suponer una pendiente Weibull – Aproximada de datos similares – Por juicio de ingeniería requiriendo conocimiento del mecanismo de falla v.g., » fatiga de ciclos bajos y corrosión típicamente tienen una pendiente Weibull de 1 <  < 2 » fatiga de ciclos altos y mecanismos de desgaste rápido típicamente tienen una pendiente Weibull 2 <  < 5

• Deben realizarse análisis con varias pendientes para determinar la sensibilidad al supuesto de pendiente 1-204

- Planear Pruebas

• Planear Pruebas para la Weibull sin Fallar – Recuerde la ecuación para estimar la vida característica sin fallar 1 

  Nt d     ln( 1  CL )  

– Recuerde la ecuación de confiabilidad Weibull     t     R( t ) exp              

1-205

- Planear Pruebas

• Planear Pruebas para la Weibull sin Fallar

– Substituyendo la primera ecuación en la segunda ecuación y solucionando para N, el tamaño de muestra



 t   ln(1 CL )  N    meta de tconfiabilidad d   ln(R ) 

– Si la y la confianza requerida se substituyen, puede negociarse el tiempo de prueba con el tamaño de muestra

1-206

• Planear Pruebas para la Weibull sin Fallar

- Planear Pruebas

– Ejemplo: • El requerimiento de confiabilidad para una unidad es 99% confiable para una misión de 500 horas con un 95% de confianza (inferior, unilateral). Para este ejemplo, supongamos que es un balero que históricamente ha tenido una pendiente Weibull de 1.5. Dado que no se permiten fallas, ¿Cuántas unidades debo de probar por cuanto tiempo para lograr este requerimiento?



15 .

15 .

 t   ln(1 CL )   500   ln(1 0.95)   500  • EntoncesN, si hay 1500 horas deprueba serían   disponibles,  (298)58      necesarias t  ln( R ) t  ln( 0 . 99 ) t      probadas por  1500d horas  para lograr los requerimientos d d  unidades para ser

1-207

- Planear Pruebas

• Planear Pruebas para la Weibull sin Fallar – Ejemplo (continuación):

• Qué pasa si hay sólo 25 lugares de prueba disponibles, o sea., ¿Cuánto tiempo necesitarán las 25 ser probadas sin fallar para lograr el requerimiento? 

 t   ln(1 CL)   500  N      t d   ln(R)   t d  td 

500 1 .  15

15 .

 ln(1 0.95)   500      ln( 0 . 99 ) t    d 

15 .

(298)

 2609

 25    298 

1-208

- Planear Pruebas • Planear Pruebas para la Weibull sin Fallar

– Ejemplo (continuación): • ¿Cómo se compara este último resultado con un plan de prueba usando la Prueba de Rachas Exitosas? – Weibull sin fallar y suponiendo una pendiente de 1.5 fue 25 unidades para 2609 horas sin fallar » sobre 65,000 horas de prueba- unidades – Prueba de Rachas Exitosas

N

ln(1 CL ) ln(1 0.95)   298 ln RL1 t   ln(0.99)

– o 298 unidades probadas por 500 horas sin fallar » sobre 149,000 horas de prueba- unidades 1-209

Resumen • La técnica No-paramétrica puede ser rápida y fácil – Lo bastante exacta para hacer un juicio de ingeniería – Puede ser potente si los tamaños de muestra son bastante grandes – Apropiadas si nada se conoce

• Paramétricas - Exponencial – Más potentes que las no-paramétricas – Permiten negociar entre tamaño de muestra, CL, número de fallas permisibles, confiabilidad – Las unidades que fallan pueden ser reemplazadas para aumentar el tiempo total de prueba – La estimación más conservadora 1-210

Resumen • Paramétricas - Weibull – Más potentes que las no-paramétricas y que suponer exponencial – Necesario suponer una pendiente Weibull • Necesita justificarse por datos previos, conocimiento de los mecanismos de falla, etc.

– Permite negociar la duración de la prueba y el tamaño de muestra para una confiabilidad y confianza dadas. – Disminuirá el tiempo total de prueba requerido para demostrar un requerimiento

1-211

Resumen • Planear Pruebas – Cubiertas sólo las estadísticas de pruebas de demostración – Necesita asegurarse que la prueba puede duplicar los mecanismos de falla experimentados en el campo • Experiencia con partes regresadas, AMEF’s, Diagramas-P, etc

– Dada una prueba apropiada, necesita definir tamaño de muestra, duración de prueba, número de fallas permisibles, etc., que logren el requerimiento de confiabilidad

1-212

6. PRUEBAS ACELERADAS

1-213

Objetivo: • Propósitos: – Presentar el concepto de prueba acelerada – Conocer los modelos para transformar los esfuerzos – Uso de los paquetes estadísticos para predecir con modelos de aceleración.

1-214

¿Para qué acelerar las fallas? ¡Para ahorrar tiempo!

Los resistencias eléctricas forradas se requieren para durar un gran tiempo y lograr las expectativas de los clientes. Probar las resistencias es una buena manera de ganar la confianza de que las partes lograrán los requerimientos, y sabemos que la información más valiosa viene de probar hasta que falle, si una resistencia forrada se prueba en voltaje nominal, la prueba podrá durar muchos meses. Sin embargo, si el voltaje es elevado por encima del nominal, 1-215 el tiempo de prueba puede ser reducido.

Problema

¿Cómo correlaciona la vida de una parte probada en un voltaje alto a la vida esperada de la misma parte en un voltaje nominal de uso? 1-216

Solución Corra al menos 3 grupos en voltajes diferentes, manteniendo el voltaje más bajo tan cercano al nominal como sea posible

1 2 3 4 5 6

Probability Plot for 260V-280V

Group 1 260V

Group 2 270 V

Group 3 280V

347hrs 498hrs 601hrs 720hrs 812hrs 889hrs

97hrs 106hrs 122hrs 140hrs 167hrs 190hrs

15hrs 24hrs 30hrs 34hrs 38hrs 41hrs

Weibull Distribution-95.0% Conf idence Interv als Complete Data 260V

Percent

99

270V

95 90 80 70 60 50 40 30

280V

Corra las partes para fallar y ajuste con una ecuación paramétrica los datos de falla.

20 10 5 3 2 1

1000

10

100

1000

Time to Failure

900

800

700

Elija un porcentaje particular de falla y ajuste la curva de regreso a las condiciones nominales para tener una predicción de vida.

600

90% 500

50% 10%

400

300

200

100

0 280

270

260

1-217

Información de Falla por Prueba Acelerada • Sobre-esforzar a los productos para obtener fallas “rápido” es quizás la forma más antigua de Pruebas de Confiabilidad.

Usualmente No se obtiene información sobre la distribución de la vida (Confiabilidad) 1-218

Información de Falla por Prueba Acelerada • Una prueba acelerada que sólo da Información de Falla (ó Modos de Falla), comúnmente se llama “Prueba de Tortura”, “Prueba de Elefante”, “Prueba Cualitativa”, etc. 1-219

¿Qué es una Prueba de Tortura? • Las pruebas de Tortura se realizan sobre muestras de tamaño pequeño y los especímenes se sujetan a un ambiente agresivo (niveles severos de esfuerzo) – Si el especimen sobrevive, pasó la prueba – Los datos de las pruebas de tortura generalmente no pueden ser extrapolados a las condiciones de uso

1-220

Prueba de Tortura • Beneficios – Aumenta la Confiabilidad por la revelación de modos probables de falla

• Cuestiones Sin Resolver – ¿Cuál es la Confiabilidad del Producto? – ¿Los Modos de Falla serán los mismos que ocurrirán durante la vida del producto bajo uso normal?

1-221

La Aceleración por SobreEsfuerzo Prueba de Tortura o Prueba Elefante

Prueba de Vida Acelerada

1-222

Prueba de Vida Acelerada • La Prueba de Vida acelerada, a diferencia de la Prueba de Tortura, está diseñada para proveer Información de la Confiabilidad del producto, componente o sistema • Un Dato básico es el Tiempo para Fallar – El tiempo para falla puede estar en cualquier medida cuantitativa, tal como: horas, días, ciclos, actuaciones, etc.

1-223

¿Qué es aceleración física y como se modela? • La Aceleración Física significa que operando una unidad en un esfuerzo mayor se producen las mismas fallas que ocurren con los esfuerzos típicos de uso, excepto que suceden mucho más rápido.

1-224

Factor de aceleración • La falla se puede deber a la fatiga mecánica, corrosión, reacción química, difusión, migración, etc. • Estos son exactamente los mismos eventos conducentes a una falla en esfuerzos mayores que en esfuerzos normales. Sólo cambia la escala del tiempo. • Un Factor de Aceleración es el multiplicador constante entre los dos niveles de esfuerzo. 1-225

Factor de Aceleración • Cuando hay verdadera aceleración, cambiar los esfuerzos es equivalente a transformar la escala del tiempo usada para registrar cuando ocurren las fallas. • Las transformaciones usadas comúnmente son lineales, lo que significa que el tiempo para fallar en un esfuerzo alto sólo tiene que ser multiplicado por una constante (el factor de aceleración) para obtener el tiempo equivalente de falla en el esfuerzo de uso 1-226

Factor de Aceleración Relaciones Lineales de Aceleración Tiempo de Falla

tu = AF x ts

Probabilidad de Falla

Fu(t) = Fs(t/AF)

Confiabilidad

Ru(t) = Rs(t/AF)

PDF o Función de Densidad

fu(t) = (1/AF)fs(t/AF)

Tasa de Falla

u(t) = (1/AF)s(t/AF)

Donde: tu: tiempo de falla en uso ts: tiempo de falla en esfuerzo Fu(t): CDF en uso

Fs(t): CDF en esfuerzo

fu(t): PDF en uso

fs(t): PDF en esfuerzo

u(t): tasa de falla en uso

s(t): tasa de falla en esfuerzo

AF: Factor de Aceleración

Cada modo de falla tiene su propio factor de aceleración. Los datos de falla deben separarse por modo de falla cuando se analizan, si la aceleración es relevante.

1-227

Factor de Aceleración Una consecuencia de las relaciones lineales es que El Parámetro de Forma para los modelos clave de distribución de vida (Weibull y Lognormal) no cambia para las unidades Las Gráficas en escala de operando bajo diferentes Probabilidad de los datos de diferentes condiciones de esfuerzos. Probability Plot for 260V-280V

Weibull Distribution-95.0% Conf idence Interv als Complete Data

260V

Percent

99

270V

95 90 80 70 60 50 40 30

280V

20 10

5 3 2 1

10

100

1000

Time to Failure

esfuerzo se alinearán aproximadamente paralelas. 1-228

¿Cuáles son los modelos de aceleración comunes? • Los modelos de Aceleración predicen el tiempo de falla en función del esfuerzo Los factores de aceleración muestran como el tiempo de falla de un nivel particular de esfuerzo (para un modo o mecanismo de falla) puede ser usado para predecir el tiempo equivalente de falla en un nivel diferente de esfuerzo. Un modelo que predice el tiempo de falla como función del esfuerzo debiera ser mejor que una colección de factores de aceleración. Si escribimos tf =G(S), donde G(S) es la ecuación del modelo para un valor arbitrario de S, entonces el factor de aceleración entre los esfuerzos S1 y S2 puede evaluarse simplemente por

AF = G(S1)/G(S2) Ahora se puede probar en el nivel de esfuerzo más alto S2, obtener un número suficiente de fallas para ajustar al modelo de distribución de vida y evaluar las tasas de falla. Después se usa la Tabla de Relaciones Lineales de Aceleración para predecir lo que pasará en el nivel de esfuerzo menor S1.

1-229

¿Cuáles son los modelos de aceleración comunes? • Los modelos de aceleración se derivan a menudo de modelos físicos o cinéticos relacionados al modelo de falla Un modelo que predice el tiempo de falla como función de los esfuerzos de operación se conoce como Modelo de Aceleración Se presentarán varios modelos útiles:

• • • • • • •

Arrhenius Eyring Regla de Potencia Inversa para Voltaje Modelo exponencial de Voltaje Modelos de Dos: Temperatura / Voltaje Modelo de Electromigración Modelos de tres esfuerzos (Temperatura, Voltaje y Humedad)



Modelo Coffin-Manson de Crecimiento de Fracturas Mecánicas 1-230

Arrhenius • El Modelo de Arrhenius predice la aceleración de las fallas debido al aumento de temperatura – Uno de las primeras transformaciones y la de más éxito para predecir como varía el tiempo de falla con la temperatura  H  t f  A exp  kT    H  1 1   AF  exp    k T1 T2   

Donde: AF= Factor de Aceleración T= temperatura °K (273.16+°C) k = Constante de Boltzmann (8.617E-05 eV/K) H = Energía de Activación A = Constante de escala (se elimina en AF)

1-231

Arrhenius Ejemplo • El Factor de Aceleración AF entre 25°C y 125°C, para un producto, es 132.65 si H es 0.5 y 17,596 si H = 1.0. 1-232

Eyring • El modelo de Eyring tiene una base teórica en la química y en la mecánica cuántica y se puede usar para modelar la aceleración cuando muchos esfuerzos están involucrados  H  C  t f  AT  exp   B  S1  T   kT   H  C D   t f  AT  exp   B  S1   D  S 2  T T    kT 

Donde:T= temperatura °K (273.16+°C); k = Constante de Boltzmann (8.617E-05 eV/K) H = Energía de Activación; A , B, C D, E= Constantes de escala; S1 y S2 Esfuerzos diferentes 1-233

Otros Modelos • Modelos útiles para 1, 2 o 3 esfuerzos son modelos Eyring, los citados exitosamente son: – – – –

La Regla de Potencia (inversa) para Voltaje El Modelo de Voltaje Exponencial Los Modelos de Dos Esfuerzos Temperatura/Voltaje Modelos de tres Esfuerzos (Temperatura, Voltaje , humedad) – Modelo Mecánico de Crecimiento de Fisuras Coffin Manson

1-234

Otros Modelos t f  AV B

Regla de Potencia (inversa) para Voltaje

t f  Ae  BV

Modelo de Voltaje Exponencial

H kT

t f  Ae V B  Ae t f  AJ n e H kT

H kT

H kT

e BV Modelos de dos esfuerzos Temperatura/Voltaje

Modelo de Electromigración

t f  Ae V B RH 

Modelos de tres esfuerzos (Temperatura, Voltaje, Humedad)

N f  Af  T   G TMAX  Modelo de crecimiento de Fisuras Mecánicas 1-235

Datos + Distribución + Modelo = Resultado

1-236

Datos • Los datos de vida (tiempos para falla) se obtienen de pruebas aceleradas en laboratorio • Obtener datos sobre los esfuerzos usados • Obtener datos sobre los esfuerzos que el producto encontrará bajo condiciones normales

1-237

Distribución • Elija una Distribución apropiada de vida – Exponencial – Weibull – Lognormal

Four-way Probability Plot for C1 No censoring

Lognormal

99

99

95 90 80 70 60 50 40

95 90 80 70 60 50 40

Percent

Percent

Normal

30 20 10 5 1

30 20 10 5 1

0

1000

2000

100

1000

Exponential 99 95 90 75 60 40 30 20

99 98 97 95

Percent

Percent

10000

Weibull

90

10 5 3 2 1

80 70 60 50 30 10 0

1000

2000

3000

4000

5000

6000

7000

8000

100

1000

1-238

Elija un Modelo • seleccione un modelo (o genere) un modelo que describa una característica de la distribución de un nivel a otro Esfuerzo de uso

¿?

Esfuerzo Esfuerzo alto 2 Esfuerzo alto 3 alto 1

1-239

¿Qué Característica de la Distribución? • Vida Característica, Parámetro de la Distribución, (Media, Mediana, R(t), F(t), ) Probability Plot for 260V-280V Weibull Distribution-95.0% Conf idence Interv als Complete Data 260V 99

270V

95 90

280V

Percent

80 70 60 50 40 30 20 10 5 3 2 1

10

100

1000

Time to Failure

La Distribución Weibull con (s) como una función del esfuerzo 1-240

Parámetros comúnmente usados como una Función del Esfuerzo para diferentes distribuciones de vida • Exponencial Media o Velocidad de Falla) • Weibull (Parámetro de Escala) – El parámetro de forma usualmente se supone constante

• Lognormal (Ln - Media o Mediana) – El parámetro de Ln - Desviación Estándar usualmente se supone constante

1-241

Formar un nuevo modelo que incluya tanto el modelo de la distribución y el de aceleración • Relación Weibull - Potencia Inversa:

 f (t )  

t     

 1

e

 t   

  



1   L( S )  K Sn    t  f (t , S )  1  1 n  K S  K Sn

     

 1

e

  t   1   K S n

     



1-242

Resultado • Resolver para los Parámetros del Modelo

   t  f (t , S )  1  1 n  n K S  K S

     

  1  t   1   K S n

e

     



•Una vez que los parámetros , K y n son estimados, las predicciones de vida pueden hacerse para diferentes t y S 1-243

Estimación de Parámetros • La estimación de parámetros puede variar de ser trivial (con muchos datos, un solo esfuerzo constante, una distribución simple y un modelo simple) a ser una tarea casi imposible – Métodos Disponibles • Gráfico • Mínimos Cuadrados • MLE

1-244

¿Cómo elegir un modelo apropiado de aceleración física? • Elegir un modelo de aceleración física es similar a elegir un modelo de distribución de vida. • Primero identifique el modo de falla y que esfuerzos son relevantes (o sea que acelerarán el mecanismo de falla) • Luego verifique en literatura y otros proyectos que le den ejemplos de un modelo particular para este mecanismo de falla 1-245

Nivel de Cambio • Casi todos los modelos reportados (excepto el Coffin-Manson para fractura mecánica) aplican a mecanismos de falla químicos o electrónicos ya que la temperatura es casi siempre una carga relevante para estos mecanismos. El modelo Arrhenius es casi siempre una parte de cualquier modelo más general. • El modelo Coffin-Manson trabaja bien para para muchos mecanismos relacionados con la fatiga mecánica 1-246

Nivel de Cambio • Algunos modelos tienen que ser ajustados para incluir un nivel de cambio para algunos esfuerzos o cargas. • La falla nunca podría ocurrir debido a un mecanismo particular a menos que un esfuerzo (temperatura por ejemplo) este más allá de un valor de cambio. Un modelo para mecanismo dependiente de temperatura con un cambio en T = T0 podría verse como Tiempo para falla = f(T((T-T0)) Donde f(T) pudiera ser Arrhenius. Conforme la temperatura desciende hacia T 0 el tiempo de falla aumenta hacia infinito en este modelo (deterministico) de aceleración 1-247

Ejemplo1 Un nuevo producto fue probado para confiabilidad. Como la vida de este producto bajo condiciones de operación se espera que tenga más de 15,000 horas, probar bajo esas condiciones no resulta factible en el tiempo. Por esa razón, se decidió correr una prueba acelerada. La temperatura de operación para este producto es 323K (50°C)y la temperatura es la única variable de aceleración. •Se desea determinar los parámetros de una Weibull de 2 parámetros en cada nivel de esfuerzo, usando la Regresión sobre X de los Rangos •Estimar los parámetros para el modelo de Eyring •Calcular la Confiabilidad de la unidad para una duración de misión de 9,000 horas, comenzando en T=0 y a temperatura de operación 323K Abra el archivo Eyring.wdf 1-248

Ejemplo1 Una vez abierto el archivo calcule los parámetros de la Weibull con 2. Los resultados aparecen en la imagen.  = 4.1598 Para separar los datos en tres conjuntos de datos diferentes use Batch Auto Run. Este usa la columna de Identificación para extraer los datos Si quiere editar los encabezados haga doble clic sobre ellos.

 = 5713.99

1-249

Ejemplo1 Aparece la siguiente Ventana, los tres niveles de la temperatura están como Identificaciones disponibles de los subconjuntos Ahora seleccionamos los tres para generar los tres subconjuntos, uno para cada temperatura Marque Action Preferences for Subsets

También se puede hacer doble clic sobre los seleccionados, para señalarlos 1-250

Ejemplo1 La ventana de Preferencias de Acción para los Subconjuntos tiene como valor previsto el Cálculo de los parámetros para los subconjuntos seleccionados. Marque OK, 2 veces Se generaron tres subconjuntos, uno para cada identificación Para cada uno se calcularon los parámetros de la Weibull de 2 Inserte una Hoja General en el Folio de Datos

1-251

Ejemplo1 Capture los valores de los parámetros calculados, para cada subconjunto, como se muestra

Note que  permanece constante y solo  cambia

En Tools>Non-Linear Equation Fit Solver se abre la hoja para ajustar ecuaciones no lineales, ahí se copiarán los valores de Esfuerzo y de Eta, como X y Y. •Para Hacerlo señale con el cursor los valores y rótulos de esfuerzo y Eta, a continuación invoque la herramienta de ajuste de ecuaciones no lineales

1-252

Ejemplo1 En las columnas X y Y quedan los datos importados de la hoja Seleccione el modelo de Eyring de la lista de ecuaciones

1-253

Ejemplo1 Luego de seleccionar el modelo de Eyring de la Lista de Ecuaciones. Cambie los valores de Límite inferior, Estimado y Límite superior para A y B

1-254

Ejemplo1 Los valores para los valores Límite y Estimación de A y B deberán quedar como lo muestra la figura. Para encontrar los valores de A y B marque en Calculate

1-255

Ejemplo1 Los valores encontrados para A y b están en la columna Solución. Usando esos valores se puede calcular Eta para cualquier nivel de Temperatura (Esfuerzo) Señale y copie el recuadro para pegarlo en la hoja general.

1-256

Ejemplo1 La Hoja general quedará como se muestra. Marque la celda E17 (el valor de A) para definirla como variable. Seleccione Edit>Define Name... para definir el valor en la celda como el valor de A

1-257

Ejemplo1 Defina el valor de la celda E17 como el valor de A

Escriba dentro del cuadro Name: A ó B según corresponda

Defina el valor de la celda E18 como el valor de B 1-258

Fórmula de Eyring

Ejemplo1 Fórmula en C25

•Llene las columnas A y B como se muestra, con los valores de Temperatura •Escriba en C25 la fórmula = (1/B25)*exp(-(A-(B/B25))), Cópiela •El valor de Eta para una Temperatura de uso de 323 es 17933.85 Ahora se calculará la Confiabilidad en un rango de 1,000 a 10,000 horas

1-259

Ejemplo1

Confiabilidad a las 9,000 horas En las celdas B41 y B42 ponga los valores encontrados de Beta y Eta Llene el rango de valores en la columna A como se muestra En la celda B47 escriba la fórmula =EXP*(-((A47/$B$42)^$B$41)), Cópiela A las 9,000 horas en temperatura de 323K la confiabilidad es 94.69%

1-260

Análisis de vida acelerada • El análisis de datos de vida acelerada se efectúa por medio de regresión • La regresión para vida acelerada construye un modelo que predice tiempos de falla • Las instrucciones en Regresión para Confiabilidad en Vida Acelerada indican que puede aceptar diferentes modelos de distribución y admite datos censurados • Minitab usa Máxima Verosimilitud para estimar los parámetros del modelo 1-261

Estructura de Datos en Minitab • Consiste de tres columnas: – Los tiempos de falla – Los indicadores de censura (si se necesitan) – Las variables predictoras • Para regresión simple con un solo predictor, es una columna con los varios niveles de la variable acelerante. (Temperatura) • Para regresión con varios predictores ponga una columna por predictor. Estas variables pueden ser tratadas como factores, covariados, interacciones o términos anidados. – –

Cada columna deberá estar en tal forma que cada renglón sea una observación, o una observación con su correspondiente en una columna de frecuencias Las columnas de frecuencias son útiles cuando se tienen grandes cantidades de datos con tiempos de falla o censura comunes y valores predictores iguales. 1-262

Ejemplo 2 • Suponga que Usted quiere investigar el deterioro de un aislamiento usado para motores eléctricos. Los motores normalmente trabajan entre 80° y 100°C. Para ahorrar tiempo y dinero, se decidió correr una prueba de vida acelerada. • Primero se obtienen tiempos de falla para el aislamiento en temperaturas más altas - 110, 130, 150 y 170°C - para acelerar el deterioro. Con esta información, se puede extrapolar a 80° y 100°C. Se sabe que existe una relación Arrhenius entre temperatura y falla

• Abra el archivo INSULATE.MTW 1-263

Ejemplo 2 •En C1 (Temp) tenemos los niveles de Temperatura •En C4 (FailureT) se registra el tiempo observado •En C5 (Censor) se indica si el tiempo es de falla o censurado •En C6 (Design) están los valores de uso normal

1-264

Ejemplo 2 Ponga la columna Censor, y OK Señale Stat>Reliability/ Survival>Acceler ated Life Testing

Ponga la columna Design, y OK

Ponga 80 y Probability Plot for Standardized residuals y OK 1-265

Ejemplo 2

Relation (Arrhenius) Plot for FailureT Weibull Distribution-95.0% Conf idence Interv als Censoring Column in Censor 10.0% 50.0% 90.0%

100000

Time to Failure

Con la Gráfica de relación, se puede ver la distribución de los tiempos de falla para cada nivel de temperatura en este caso, los percentiles 10, 50 y 90

10000

1000

70

90

110

130

150

170

Temp

El modelo de regresión estima los percentiles de la distribución del tiempo de falla: Y p =  0 +  1X + p Dependiendo de la distribución, Y p= • ln(tiempo de falla), para Weibull, exponencial, lognormal y loglogística. • Tiempo de falla, para normal, valor extremo, logística

donde: Yp = percentil p de la distribución del tiempo de falla 0 = intersección en Y (constante) 1 = coeficiente de regresión X = valores del predictor (pueden estar transformados) = parámetro de escala 1-266 p = percentil p de la distribución del error

Ejemplo 2 Probability Plot for SResids of FailureT Extreme v alue Distribution-95.0% Conf idence Interv als Censoring Column in Censor 99.9 99 95 90 80 70 60 50 40 30 20

Percent

Esta gráfica le permite evaluar si la distribución seleccionada ajusta a los datos. En general, entre más cercanos estén los puntos a la línea ajustada, mejor es el ajuste.

10 5 3 2 1

0.1 -8

-4

0

Standardized Residuals

El valor de la distribución del error p, depende de la distribución seleccionada Para la Weibull y la exponencial, MTB toma el logaritmo de los datos y usa la distribución de valor extremo

1-267

Regression with Life Data Response Variable: FailureT

Ejemplo 2

Censoring Information Uncensored value Right censored value

Usted acaba de obtener una fórmula que relaciona el tiempo de falla en función de la temperatura:

Count 66 14

ln(tiempo de falla) = -15.1874 + 0.83072(ArrTemp) +0.35403p donde: p = percentil (p) de la distribución estándar de valor extremo ArrTemp= 11604.83/ (Temp + 273.16)

Distribution: Weibull Transformation on accelerating variable:

Arrhenius

Regression Table Predictor Intercept Temp Scale

Coef -15.1874 0.83072 0.35403

Log-Likelihood =

Standard Error 0.9862 0.03504 0.03221

Z P -15.40 0.000 23.71 0.000

95.0% Normal CI Lower Upper -17.1203 -13.2546 0.76204 0.89940 0.29621 0.42313

-43.64

Table of Percentiles Percent 50 50

Temp 80.0000 100.0000

Percentile 159584.5 36948.57

Standard Error 27446.85 4216.511

95.0% Normal CI Lower Upper 113918.2 223557.0 29543.36 46209.94

La tabla de percentiles muestra los percentiles 50 para las temperaturas que se pusieron. El percentil 50 es una buena estimación de duración del aislamiento en el campo a 80°C, el aislamiento durará alrededor de 159,584.5 horas o 18.20 años, a 100°C el aislamiento durará alrededor de 36,984.57 horas o 4.21 años

1-268

Precauciones y Peligros al determinar el Factor de Aceleración •

Al determinar el Factor de Aceleración, tenga cuidado de ser demasiado optimista. – Suponer un Factor muy alto puede dar un falso sentido de seguridad. – Podría no tener el alto nivel de confiabilidad que Usted cree. – Errar al detectar cambios en el modo de falla, usar el modelo equivocado, validar mal el modelo puede resultar en un Factor de Aceleración demasiado optimista..





La estimación de un factor demasiado optimista, puede a su vez resultar en la aceptación de componentes no confiables y , finalmente, ¡costos altos y clientes insatisfechos! Debemos aprender de los ejemplos anteriores para evitar esos errores. 1-269

Proceso de 15 Pasos Planear la prueba

Ejecutar, analizar, e implementar la prueba

1. 2. 3. 4. 5. 6. 7.

Evaluar Costos y Beneficios de Acelerar Determinar Función y Ambiente Conducir / Interpretar Análisis de Modo de Falla Determinar modo/mecanismo de falla a acelerar Determinar como acelerar el mecanismo de falla Determinar niveles de los esfuerzos Seleccionar el tamaño de muestra para cada nivel de esfuerzo 8. Determinar donde será corrida la prueba 9. Determinar el modelos de distribución y aceleración 10. Validar el sistema de medición 11. Correr la Prueba 12. Graficar e interpretar los resultados 13. Ajustar el Modelo 14. Validar el Modelo 15. Determinar el Factor de Aceleración e implantarlo

1-270

FRACAS FAILURE REPORTING AND CORRECTIVE ACTION SYSTEM

1-271

Objetivo Su principal objetivo es describir cualquier modo de falla detectado a través de las pruebas del sistema, subsistema o componente en evaluación a todos los involucrados de manera fácil y rápida, así como dar a conocer las acciones correctivas por implementarse dadas por el equipo involucrado. Alcance Este sistema es una herramienta únicamente para almacenaje de registros.

1-272

REFERENCIAS • • • • • • • • • •

Statistical Methods for Reliability Data, Meeker and Escobar, 1998 Handbook of Reliability Engineering and Management by Ireson, Coombs, and Moss, McGraw Hill, 1990 Engineering Statistics Handbook, capitulo 8, en http://www.itl.nist.gov/div898/handbook/main.htm How To Plan An Accelerated Life Test -- Some Practical Guidelines., Meeker and Hahn, ASQ Reliability and Life Testing Handbook, Vols.1 y 2, Dimitri Kececioglu, Prentice Hall, 1991 Electronic Component Reliability, Finn Jensen, Wiley, 1998 Reliability Review, ASQ Brian Henninger’s accelerated test project Software - Minitab version 12.2 (Minitab Inc) y WEIBULL 5.0 (Reliasoft) Otras fuentes - Mechanical Prediction Library, Reliability Tips, Brian Henninger, Doug Kemp, Ken Zagray, Bill Wunderlin, Alex Cambon, University of Maryland Accelerated Testing Course - Modarres 1-273

REFERENCIAS • •

Statistical Methods for Reliability Data, Meeker and Escobar, 1998 Handbook of Reliability Engineering and Management by Ireson, Coombs, and Moss, McGraw Hill, 1990



Engineering Statistics Handbook, capitulo 8, en http://www.itl.nist.gov/div898/handbook/main.htm



Reliability and Life Testing Handbook, Vols.1 y 2, Dimitri Kececioglu, Prentice Hall, 1991 Reliability: For Technology, Engineering, and Management, Paul Kales, Prentice Hall, 1998 Reliability Methods for Engineers, K. S. Krishnamoorthi, ASQ 1992 Reliability Statistics, Robert A. Dovich, ASQ 1990 Software - Minitab version 12.2 (Minitab Inc) y WEIBULL 5.0 (Reliasoft) Otras fuentes - Mechanical Prediction Library, Reliability Tips, Brian Henninger, Doug Kemp, Ken Zagray, Bill Wunderlin, Alex Cambon, University of Maryland Accelerated Testing Course - Modarres

• • • • •

1-274

Referencias • • • • • • • • • •

Accelerated Testing , Wayne Nelson, Wiley, 1990 Statistical Methods for Reliability Data, Meeker and Escobar, 1998 Handbook of Reliability Engineering and Management by Ireson, Coombs, and Moss, McGraw Hill, 1990 How To Plan An Accelerated Life Test -- Some Practical Guidelines., Meeker and Hahn, ASQ Reliability and Life Testing Handbook, Vol. 2, Dmitri Kececioglu, Prentice Hall, 1991 Electronic Component Reliability, Finn Jensen, Wiley, 1998 Reliability Review, ASQ Brian Henninger’s accelerated test project Software - Minitab version 12.2 (Minitab Inc) y ALTA (Reliasoft) Otras fuentes - Mechanical Prediction Library, Reliability Tips, Brian Henninger, Doug Kemp, Ken Zagray, Bill Wunderlin, Alex Cambon, University of Maryland Accelerated Testing Course - Modarres

1-275

Related Documents


More Documents from ""