_0_lecture 2018_dsp By Rahmad Hidayat.pdf

  • Uploaded by: Muhammad Abdillah
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View _0_lecture 2018_dsp By Rahmad Hidayat.pdf as PDF for free.

More details

  • Words: 2,267
  • Pages: 134
BAHAN AJAR

Digital Signal Processing [Sistem Pemrosesan Sinyal]

Rahmad Hidayat Email : [email protected]

Jurusan Teknik Elektro SEKOLAH TINGGI TEKNOLOGI MANDALA Jalan Soekarno Hatta 597 Bandung

SISTEM PENILAIAN

•Tugas • UTS • UAS • Presensi Selasa 17.00 17 00

2

: : : :

20 % 30 % 40 % 10 %

MATERI

•BAB I •BAB II •BAB BAB III •BAB IV •BAB V

: : : : :

Pendahuluan Sinyal & Sistem Diskrit T Transformasi f iZ Filter DFT-FFT

• Latihan Aplikasi DSP dengan MATLAB •Tugas Membuat GUI MATLAB untuk beberapa aplikasi DSP

Catatan : beberapa p materi ((suplemen) p ) di-share melalui g google g drive

3

BAB II. PENDAHULUAN

LATAR BELAKANG Pemrosesan Sinyal Analog

Prosesor Analog Sederhana

ekivalen dengan sebuah FILTER ANALOG 5

LATAR BELAKANG Contoh Filter Analog

6

Fungsi Filter

Based on slides by Haris Balzakis –Lecture 5 DSP

7

Sistem Pemrosesan Sinyal (DSP) dari Sinyal Analog

(Blok ekivalen dari Prosesor Analog)

8

Sistem Pemrosesan Sinyal (DSP) dari Sinyal Analog

(Blok ekivalen dari Filter Analog)

9

Analog to Digital Converter

10

Jadi untuk apa sinyal diubah ?

11

BAB II II. SINYAL & SISTEM DISKRIT

Based on slides by Kenneth E. Barner, Univ.of Delaware

Tentang Sinyal

www.complextorial.com

13

Tentang Sinyal

Signals are functions of time that curry information relative to the state and/or the behavior of a system. Categorization: Depending on whether they are defined for continuous time intervals or for specific time instances: •) Continuous time signals. •) Discrete Di t titime signals. i l Depending on the values they take: •) Analog signals •) Digital signals.

Based on slides by Haris Balzakis –Lecture 5 DSP

14

Tipe Sinyal

Based on slides by Haris Balzakis –Lecture 5 DSP

15

Tipe Sinyal

Based on slides by Haris Balzakis –Lecture 5 DSP

16

Contoh Sinyal

17

Contoh Sinyal

18

Contoh Sinyal

19

Contoh Sinyal

20

Sinyal Waktu Diskrit

21

Sinyal Diskrit

22

Sinyal Diskrit

23

Sinyal Waktu Diskrit

See Oppenheim and Schafer , second edition pages 8-93, or first edition pages 8-79

24

Sinyal Waktu Diskrit

See Oppenheim and Schafer , second edition pages 8-93, or first edition pages 8-79

25

Sinyal Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

26

Sinyal Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

27

Sistem Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

28

Sistem Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

29

Sistem Waktu Diskrit (Contoh-1)

Based on slides by Kenneth E. Barner, Univ.of Delaware

30

Sistem Waktu Diskrit (Contoh-2)

Based on slides by Kenneth E. Barner, Univ.of Delaware

31

Klasifikasi Sistem Waktu Diskrit

Based on slides of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, August 31, 2010

32

Klasifikasi Sistem Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

33

Klasifikasi Sistem Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

34

Klasifikasi Sistem Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

35

Klasifikasi Sistem Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

36

Analisis Sistem LTI

(Linear Time Invariant )

Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

37

Analisis Sistem LTI

(Linear Time Invariant )

Waktu Diskrit

Based on slides by Kenneth E. Barner, Univ.of Delaware

38

Based on slides by Kenneth E. Barner, Univ.of Delaware

39

Based on slides by Kenneth E. Barner, Univ.of Delaware

40

Based on slides by Kenneth E. Barner, Univ.of Delaware

41

Properti Konvolusi

Based on slides by Kenneth E. Barner, Univ.of Delaware

42

Properti Konvolusi

See Oppenheim and Schafer, Second Edition pages 8–93, or First Edition pages 8–79.

43

Sistem LTI - KAUSAL

Based on slides by Kenneth E. Barner, Univ.of Delaware

44

Sistem LTI - KAUSAL A system is causal if the output at n depends only on the input at n and earlier inputs. For example, the backward difference system : is causal, but the forward difference system : is not.

See Oppenheim and Schafer, Second Edition pages 8–93, or First Edition pages 8–79.

45

Sistem LTI - STABIL

Based on slides by Kenneth E. Barner, Univ.of Delaware

46

Sistem LTI - STABIL The ideal delay system A system is stable if every bounded input sequence produces a bounded output sequence:

For example, example the accumulator is an example of an unbounded system, since its response to the unit step u[n] is

which has no finite upper bound bound. See Oppenheim and Schafer, Second Edition pages 8–93, or First Edition pages 8–79.

47

Based on slides by Kenneth E. Barner, Univ.of Delaware

48

Based on slides of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, August 31, 2010

49

Based on slides of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, August 31, 2010

50

Based on slides of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, August 31, 2010

51

Based on slides of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, August 31, 2010

52

Based on slides of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, August 31, 2010

53

Based on slides of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, August 31, 2010

54

Based on slides by Kenneth E. Barner, Univ.of Delaware

55

Difference Equation (Persamaan Beda)

Based on slides by Kenneth E. Barner, Univ.of Delaware

56

Realisasi Direct Form-I

Based on slides by Kenneth E. Barner, Univ.of Delaware

57

Realisasi Direct Form-II

Based on slides by Kenneth E. Barner, Univ.of Delaware

58

Realisasi :

Based on slides by Kenneth E. Barner, Univ.of Delaware

59

Persamaan Beda (Difference Equation)

60

Persamaan Beda (Difference Equation)

B.A Shenoi, “Introduction to DSP and Filter Design”, John Wiley & Sons,Inc., 2006

61

BAB III. TRANSFORMASI Z

Transformasi Z

Based on slides by EECS, University of Tennessee,2010

63

Transformasi Z

Based on slides by EECS, University of Tennessee,2010

64

Transformasi Z

Based on slides by EECS, University of Tennessee,2010

65

Transformasi Z dari Filter FIR

Based on slides by EECS, University of Tennessee,2010

66

Fungsi sistem dari Sistem LTI

Based on slides by EECS, University of Tennessee,2010

67

Kelengkapan Transformasi Z

Based on slides by EECS, University of Tennessee,2010

68

Transformasi Z sebagai operator

Based on slides by EECS, University of Tennessee,2010

69

Konvolusi & Transformasi Z

Based on slides by EECS, University of Tennessee,2010

70

Sistem Kaskade pd Transformasi Z

Based on slides by EECS, University of Tennessee,2010

71

Faktorisasi Polinomial Z

Based on slides by EECS, University of Tennessee,2010

72

Domain

Based on slides by EECS, University of Tennessee,2010

73

Bidang Z , plot Pole-Zero

Based on slides by EECS, University of Tennessee,2010

74

Signifikansi Zero dari H(z)

Based on slides by EECS, University of Tennessee,2010

75

Signifikansi Zero dari H(z)

Based on slides by EECS, University of Tennessee,2010

76

Filter Nulling

Based on slides by EECS, University of Tennessee,2010

77

Plot pole-zero & respon frekuensi

Based on slides by EECS, University of Tennessee,2010

78

Sum filter dengan running L-poin

Based on slides by EECS, University of Tennessee,2010

79

Bandpass filter Kompleks

Based on slides by EECS, University of Tennessee,2010

80

Bandpass filter dengan Kompleks

Based on slides by EECS, University of Tennessee,2010

81

Bandpass filter dg koefisien Real

Based on slides by EECS, University of Tennessee,2010

82

ROC (region of convergence)

Based on slides by EECS, University of Tennessee,2010

83

ROC (region of convergence)

Based on slides by EECS, University of Tennessee,2010

84

ROC (region of convergence)

Based on slides by EECS, University of Tennessee,2010

85

Contoh-1 (Penentuan Transformasi Z) (a) x[n] = [1, 2, 5, 7, 0, 1] Solution: X(z) = 1 + 2z-1+ 5z-2 + 7z-3 + z-5, ROC: entire z plane except z = 0 (b) y[n] [n] = [1, [1 2, 2 5, 5 7, 7 0, 0 1] Solution: Y(z) = z2 + 2z + 5 + 7z-1 + z-3 ROC: entire zz-plane plane except z = 0 and z = ∞. ∞ ( ) z[n] (c) [ ] = [[0,, 0,, 1,, 2,, 5,, 7,, 0,, 1]] Solution: Y(z) = z-2 + 2z-3 + 5z-4 + 7z-5 + z-7, ROC: all z except z=0 Based on slides by Dileep Kumar

86

Transformasi Z (d) p[n] = δ[n] S l ti Solution: P( P(z)) = 1 1, ROC ROC: entire ti z-plane. l (e) q[n] = δ[n – k], k] k > 0 Solution: Q(z) = z-k, entire z-plane except z=0. (f) r[n] = δ[n+k], k > 0 Solution: R(z) = zk, ROC: entire z-plane except z = ∞.

Based on slides by Dileep Kumar

87

Contoh-2 (Penentuan Transformasi Z) Determine the z-transform of x[n] = (1/2)nu[n] Solution:

X (z ) =





x [ n ]z − n

n



n = −∞ ∞

⎛1⎞ = ∑ ⎜ ⎟ z −n = n=0 ⎝ 2 ⎠

⎛ 1 −1 ⎞ ⎜ z ⎟ ∑ ⎠ n=0 ⎝ 2

1 −1 ⎛ 1 ⎞ z + ⎜ z⎟ 2 ⎝2 ⎠ 1 = 1 −1 1− z 2 = 1+

n

−2

+ .......

ROC: |1/2 z-1| < 1, or equivalently |z| > 1/2 Based on slides by Dileep Kumar

88

Contoh-3 (Penentuan Transformasi Z) Determine the z-transform of the signal x[n] = anu[n] Solusi : X( z ) =



n −n a ∑ z = n=0

= 1 + az

−1

(

+ az

)

−1 2

∑ (az ) ∞

n

−1

n=0

+ .......

1 = 1 − az − 1 ROC :| z |>| a | Based on slides by Dileep Kumar

89

Invers Transformasi Z In general, the inverse z-transform may be found by using any of the following methods: Power series method Partial fraction method

Based on slides by Dileep Kumar

90

Contoh Penentuan Invers Transformasi Z Example 1: Determine the z-transform of

X( z ) =

1 1 − 1 .5 z

−1

+ 0 .5 z

−2

With power series method and by dividing the numerator of X(z) by its denominator, we obtain the power series 1 1 − 32 z −1 + 12 z − 2

31 − 4 = 1 + 32 z −1 + 74 z − 2 + 158 z − 3 + 16 z + ...

∴ x[n] = [1, 3/2, 7/4, 15/8, 31/16,…. ] Based on slides by Dileep Kumar

91

Contoh Penentuan Invers Transformasi Z Example 2: Determine the z-transform of −1

4−z X( z ) = −1 −2 2 − 2z + z With power series method and by dividing the numerator of X(z) by its denominator, we obtain the power series

∴ x[n] = [2, [2 1.5, 1 5 0.5, 0 5 0.25, 0 25 …..]]

Based on slides by Dileep Kumar

92

LATIHAN SOAL TZ 1) Desainlah realisasi Direct Form-I dan II jika diberikan fungsi transfer dari filter digital sbb :

Solusi :

(di (direct fform-1) 1) Edmund Lai, “Practical DSP for Engineers and Technicians”, Newnes, 2003

93

LATIHAN SOAL TZ

(direct form form-2) 2) Edmund Lai, “Practical DSP for Engineers and Technicians”, Newnes, 2003

94

LATIHAN SOAL TZ 2).

95

Edmund Lai, “Practical DSP for Engineers and Technicians”, Newnes, 2003

LATIHAN SOAL TZ 3).

96

LATIHAN SOAL TZ 4).

97

LATIHAN SOAL TZ 5).

98

LATIHAN SOAL TZ 6).

99

Kondisi STABIL

100

Kondisi STABIL

101

Kondisi STABIL

John W.Leis, “DSP using Matlab for Students & Reseachers”, John Wiley & Sons, Inc., 2011

102

LATIHAN SOAL

https://sttmandalabdg.academia.edu/rahmadhidayat/

103

LATIHAN SOAL

https://sttmandalabdg.academia.edu/rahmadhidayat/

104

LATIHAN SOAL 1) Dengan Matlab, lakukan plot diagram Pole zero rho = 0 0.9 9; theta = pi/8 ; a = [ 12*rho*cos(theta ) rho^2] ; b = [ 12 1 ] ; p = roots ( a ) z = roots (b) ( ) zplane (b , a ) a2 = poly (p) b2 = poly ( z ) Catat juga hasilnya !

105

LATIHAN SOAL 2) Dengan Matlab, lakukan plot diagram Pole zero

Catat juga hasilnya !

106

LATIHAN SOAL 2) Dengan Matlab, lakukan plot diagram Pole zero

Catat juga hasilnya !

107

Persamaan Beda (Difference Equation)

LATIHAN SOAL SOAL-SOAL SOAL PERSAMAAN BEDA ((Lihat materi suplemen) p )

108

Persamaan Beda (Difference Equation)

LATIHAN SOAL SOAL-SOAL SOAL PERSAMAAN BEDA ((Lihat materi suplemen) p )

109

BAB IV. FILTER

PERANCANGAN SISTEM DISKRIT (Filter)

111

PERANCANGAN SISTEM DISKRIT (Filter)

112

PERANCANGAN SISTEM DISKRIT (Filter)

113

PERANCANGAN SISTEM DISKRIT (Filter)

114

LATIHAN SOAL TZ 1) Desainlah realisasi Direct Form-I dan II jika diberikan fungsi transfer dari filter digital sbb :

Solusi :

(di (direct fform-1) 1) Edmund Lai, “Practical DSP for Engineers and Technicians”, Newnes, 2003

115

LATIHAN SOAL TZ

(direct form form-2) 2) Edmund Lai, “Practical DSP for Engineers and Technicians”, Newnes, 2003

116

PERANCANGAN SISTEM DISKRIT (IIR Filter)

117

PERANCANGAN SISTEM DISKRIT (IIR Filter)

118

PERANCANGAN SISTEM DISKRIT (IIR Filter)

119

PERANCANGAN SISTEM DISKRIT (IIR Filter)

120

PERANCANGAN SISTEM DISKRIT (IIR Filter)

121

PERANCANGAN SISTEM DISKRIT (IIR Filter)

122

PERANCANGAN SISTEM DISKRIT (IIR Filter)

123

PERANCANGAN SISTEM DISKRIT (IIR Filter)

Gambar juga direct form-1 form 1 dan direct form-2 form 2 nya !

124

PERANCANGAN SISTEM DISKRIT (IIR Filter)

125

PERANCANGAN SISTEM DISKRIT (IIR Filter)

126

PERANCANGAN SISTEM DISKRIT (IIR Filter)

127

PERANCANGAN SISTEM DISKRIT (IIR Filter) Cek kebenaran form kaskade : hitung 8 sampel pertama dari impuls respon

128

HASIL SIMULASI

129

BAB V. DFT- FFT

CONTOH APLIKASI

131

REFERENSI

REFERENSI

• Understanding Digital Signal Processor, R.G Lyons, Prentice Hall, 2004. • Digital Di it l Si Signall P Processing i – a practice ti guide id ffor engineers i and d scientists, SW.Smith, Newness, 2003. • Digital g Signal g Processing, g S.Mitra, Mc.Graw Hill,3rd Edition, 2005

133

Terimakasih ! Rahmad Hidayat [email protected]

STT MANDALA Copyright 2018

Related Documents


More Documents from ""