St Joseph’s Institution Secondary Four Mathematics TOPIC − Trigonometric Functions, Identities and Equations Name:_____________________________________ ( Q1)
Q2)
) Class: ___________
Find all angles between 0° and 360° inclusive which satisfy the following equations 2 tan x = 3 sin x 2 cos 2 x + 3 cos x + 1 = 0 a) e) b)
2 cos 2 x + 3 sin x = 3
f)
sin( 2 x − 30 ) = cos 2 x
c)
7 sin 2 x + cos 2 x = 5 sin x
g)
sin 5 x − sin 3 x + sin x = 0
d)
sin 2 x + cos x = 0
h)
3 sin x + 4 cos x = 1
Prove the following identities a)
( sec x + tan x ) 2 ≡ 1 + sin x
b)
1 1 + ≡1 2 1 + tan x 1 + cot 2 x
c)
cot x +
d)
sin 4 x − cos 4 x ≡ sin 2 x − cos 2 x
e)
cos ec 2 x − 2 ≡ cos 2 x cos ec 2 x
f)
tan A + tan B sin( A + B ) ≡ tan A − tan B sin( A − B )
g)
2 cos ec 2 2 x − cos ec 2 x ≡ −2 cot 2 x cos ex 2 x
h)
(1 + 2 sin 2x )( cos x − sin x ) ≡ cos 3 x + sin 3 x
i)
sin 2 x + cos 2 x − 1 1 − tan x ≡ sin 2 x + cos 2 x + 1 1 + cot x
© Jason Ingham 2009
1 − sin x
sin x ≡ cos ec x 1 + cos x
1
Q3)
Q4)
Q5)
Simplify the expression ( tan θ − cot θ ) sinθ cos θ + 2 cos 2 θ . Given that 3 tanθ = 4 and that θ is acute, find, without using a calculator, sinθ + 3 cos θ the value of . 2 cos 2 θ − sinθ Express y = 3 cos 2 x − sin 2 x in the form R cos( x ± α ) where R > 0 and 0° < α < 90° . Hence, find i) the minimum value of y and the corresponding value of x for 0° ≤ x ≤ 360° ; ii)
the least value of
1 and the corresponding value of x for y
0° ≤ x ≤ 90° ; iii)
the range of values for y .
sin( A − B ) 3 = , prove that tan A + 5 tan B = 0 . Hence, solve the sin( A + B ) 2 equation 2 sin( A − 30°) = 3 sin( A + 30°) for 0° ≤ A ≤ 360° .
Q6)
Given that
Q7)
Given that cos 2 x = i)
1 , calculate without using a calculator, the values of 9 cos 4 x
ii)
tan 2 x
iii)
sin x .
Q8)
Find all values of A for which 1 + sin 2 A + cos 2 A = 0 for 0 ≤ A ≤ 11.
Q9)
Given that sin A = a and A is obtuse, express the following in terms of a cos 4 A i) ii)
π tan − A 2
iii)
cos ec ( 2π − A )
2
Q10) Solve the equation ( cos 4θ + cos θ ) + ( sin 4θ + sinθ ) = 2 3 sin 3θ for 0 ≤θ ≤ 3. 2
Q11) (a)
2
Prove the identity ( 2 + sin 2x ) cos x + (1 + cos 2 x ) sin x ≡ 2(1 + sin 2x ) cos x
(b)
Solve the equation 2 cos 2 θ + sin 2θ = 2 for 0° ≤ θ ≤ 360° .
(c)
Solve the equation cot θ + 4 tanθ = 4 cos ec θ for 0° ≤ θ ≤ 360° .
Q12) Given that 5 cos 2 A − 12 sin A cos A = A + B cos( 2 A + λ ) for all real values of A, find the value of A, of B and of λ for B > 0 and 0° ≤ λ ≤ 90° . Hence find the solution of the equation 5 cos 2 A − 12 sin A cos A = 2 for 0° ≤ A ≤ 360° . Q13) (a)
Find the values of x between 0° and 360° inclusive for which sin 2 x − 8 cos 2 x = 2 cos x .
(b)
Prove the identity sin 2 5θ − sin 2 3θ ≡ sin 8θ sin 2θ .
(c)
Given that sin( A + B ) =
Q14) (a)
4 5 and sin( A − B ) = where ( A + B ) and 5 13 ( A − B ) are angles between 0° and 90° , prove that tan 2A = 63 . 16
Prove that cot ( 45° − A ) =
cot A + 1 . Hence show that cot A + 1
cot 15° = 2 + 3 . (b)
(c)
4 4 Solve the equation sin B + cos B =
3 for 0° ≤ B ≤ 360° . 4
Express 3 cos θ + sinθ in the form R cos(θ − α ) where R > 0 and π 0 < α < . Hence or otherwise 2 i) show that 2 − 3 cos θ − sinθ ≥ 0 for all values of θ , ii)
solve the equation 2 − 3 cos θ − sinθ = 0 for 0° ≤ θ ≤ 360° .
3