08 - Trigonometric Functions, Identities And Equations

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 08 - Trigonometric Functions, Identities And Equations as PDF for free.

More details

  • Words: 966
  • Pages: 3
St Joseph’s Institution Secondary Four Mathematics TOPIC − Trigonometric Functions, Identities and Equations Name:_____________________________________ ( Q1)

Q2)

) Class: ___________

Find all angles between 0° and 360° inclusive which satisfy the following equations 2 tan x = 3 sin x 2 cos 2 x + 3 cos x + 1 = 0 a) e) b)

2 cos 2 x + 3 sin x = 3

f)

sin( 2 x − 30 ) = cos 2 x

c)

7 sin 2 x + cos 2 x = 5 sin x

g)

sin 5 x − sin 3 x + sin x = 0

d)

sin 2 x + cos x = 0

h)

3 sin x + 4 cos x = 1

Prove the following identities a)

( sec x + tan x ) 2 ≡ 1 + sin x

b)

1 1 + ≡1 2 1 + tan x 1 + cot 2 x

c)

cot x +

d)

sin 4 x − cos 4 x ≡ sin 2 x − cos 2 x

e)

cos ec 2 x − 2 ≡ cos 2 x cos ec 2 x

f)

tan A + tan B sin( A + B ) ≡ tan A − tan B sin( A − B )

g)

2 cos ec 2 2 x − cos ec 2 x ≡ −2 cot 2 x cos ex 2 x

h)

(1 + 2 sin 2x )( cos x − sin x ) ≡ cos 3 x + sin 3 x

i)

sin 2 x + cos 2 x − 1 1 − tan x ≡ sin 2 x + cos 2 x + 1 1 + cot x

© Jason Ingham 2009

1 − sin x

sin x ≡ cos ec x 1 + cos x

1

Q3)

Q4)

Q5)

Simplify the expression ( tan θ − cot θ ) sinθ cos θ + 2 cos 2 θ . Given that 3 tanθ = 4 and that θ is acute, find, without using a calculator, sinθ + 3 cos θ the value of . 2 cos 2 θ − sinθ Express y = 3 cos 2 x − sin 2 x in the form R cos( x ± α ) where R > 0 and 0° < α < 90° . Hence, find i) the minimum value of y and the corresponding value of x for 0° ≤ x ≤ 360° ; ii)

the least value of

1 and the corresponding value of x for y

0° ≤ x ≤ 90° ; iii)

the range of values for y .

sin( A − B ) 3 = , prove that tan A + 5 tan B = 0 . Hence, solve the sin( A + B ) 2 equation 2 sin( A − 30°) = 3 sin( A + 30°) for 0° ≤ A ≤ 360° .

Q6)

Given that

Q7)

Given that cos 2 x = i)

1 , calculate without using a calculator, the values of 9 cos 4 x

ii)

tan 2 x

iii)

sin x .

Q8)

Find all values of A for which 1 + sin 2 A + cos 2 A = 0 for 0 ≤ A ≤ 11.

Q9)

Given that sin A = a and A is obtuse, express the following in terms of a cos 4 A i) ii)

π  tan − A  2 

iii)

cos ec ( 2π − A )

2

Q10) Solve the equation ( cos 4θ + cos θ ) + ( sin 4θ + sinθ ) = 2 3 sin 3θ for 0 ≤θ ≤ 3. 2

Q11) (a)

2

Prove the identity ( 2 + sin 2x ) cos x + (1 + cos 2 x ) sin x ≡ 2(1 + sin 2x ) cos x

(b)

Solve the equation 2 cos 2 θ + sin 2θ = 2 for 0° ≤ θ ≤ 360° .

(c)

Solve the equation cot θ + 4 tanθ = 4 cos ec θ for 0° ≤ θ ≤ 360° .

Q12) Given that 5 cos 2 A − 12 sin A cos A = A + B cos( 2 A + λ ) for all real values of A, find the value of A, of B and of λ for B > 0 and 0° ≤ λ ≤ 90° . Hence find the solution of the equation 5 cos 2 A − 12 sin A cos A = 2 for 0° ≤ A ≤ 360° . Q13) (a)

Find the values of x between 0° and 360° inclusive for which sin 2 x − 8 cos 2 x = 2 cos x .

(b)

Prove the identity sin 2 5θ − sin 2 3θ ≡ sin 8θ sin 2θ .

(c)

Given that sin( A + B ) =

Q14) (a)

4 5 and sin( A − B ) = where ( A + B ) and 5 13 ( A − B ) are angles between 0° and 90° , prove that tan 2A = 63 . 16

Prove that cot ( 45° − A ) =

cot A + 1 . Hence show that cot A + 1

cot 15° = 2 + 3 . (b)

(c)

4 4 Solve the equation sin B + cos B =

3 for 0° ≤ B ≤ 360° . 4

Express 3 cos θ + sinθ in the form R cos(θ − α ) where R > 0 and π 0 < α < . Hence or otherwise 2 i) show that 2 − 3 cos θ − sinθ ≥ 0 for all values of θ , ii)

solve the equation 2 − 3 cos θ − sinθ = 0 for 0° ≤ θ ≤ 360° .

3

Related Documents