08 Bass 3 Sol

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 08 Bass 3 Sol as PDF for free.

More details

  • Words: 2,052
  • Pages: 4
AS3sol/MATH1111/YKL/08-09

THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH1111: Linear Algebra Assignment 3 Suggested Solution

1. In lecture, we proved that W = Span(W ) if and only if W is a subspace. Let me repeat the argument below. [No matter whether or not W is a subspace, W ⊂ Span(W ) since w ∈ W ⇒ 1 · w ∈ Span(W ). ”If part”: If W is a subspace, then any linear combination of elements of W belongs to W . i.e. Span(W ) ⊂ W . ∴ W = Span(W ). ”Only if” part: Clear by direct checking from definition.] Now we prove the result in Qn 1. For any nonempty subset S ⊂ V , Span(S) is a subspace. Remains to show: S ⊂ W and W is a subspace ⇒ Span(S) ⊂ W . This is also clear, since w1 , w2 , · · · , wr ∈ S ⇒ w1 , w2 , · · · , wr ∈ W . Thus, a1 w1 + a2 w2 + · · · + ar wr ∈ W because W is a subspace. ∴ Span(S) ⊂ W .

1. Since U + V is a subspace containing the sets U and V , by Qn 1 part (b), Span(U ∪ V ) ⊂ U +V. Let x ∈ U + V . Then x = u + v where u ∈ U and v ∈ V . So x is a linear combination of vectors in U ∪ V . i.e. U + V ⊂ Span(U ∩ V ). 2. No. Consider U = Span((1

1)T ), V = Span(e1 ), W = Span(e2 ), all of which are sub-

spaces of R2 . Then U + (V ∩ W ) = U + {0} = U but (U + V ) ∩ (U + W ) = R2 ∩ R2 = R2 . Remark. U + (V ∩ W ) ⊂ (U + V ) ∩ (U + W ) is always true. 3. No. Use the counterexample in (b). Now, U ∩ V = {0} and U ∩ W = {0}, but since V + W = R2 , we have U ∩ (V + W ) = U . 1

Let B = {u1 , · · · , ur } be a basis for U ∩ V . (i.e. dim(U ∩ V ) = r.) Then {u1 , · · · , ur } is a set of linearly independent vectors in U . By Theorem 3.4.4 (ii), let dim U = n, we can extend u1 , · · · , ur by adding suitable vectors to form a basis for U . Let {u1 , · · · , ur , b1 , · · · , bn−r } be such a basis for U . (In case n = r, u1 , · · · , ur form a basis for U and we do not need to add anything.) Similary, if dim V = m, we get a basis {u1 , · · · , ur , b01 , · · · , b0m−r } for V . Now we prove that u1 , · · · , ur , b1 , · · · , bn−r , b01 , · · · , b0m−r form a basis for U + V . 1◦ {u1 , · · · , ur , b1 , · · · , bn−r , b01 , · · · , b0m−r } is a spanning set for U + V Proof. Let w ∈ U + V . By definition, w = u + v where u ∈ U and v ∈ V . u is a linear combination of u1 , · · · , ur , b1 , · · · , bn−r and v is a linear combination of u1 , · · · , ur , b01 , · · · , b0m−r . As a result, w = u + v is a linear combination of u1 , · · · , ur , b1 , · · · , bn−r , b01 , · · · , b0m−r . This proves our assertion. 2◦ u1 , · · · , ur , b1 , · · · , bn−r , b01 , · · · , b0m−r are linearly independent. Proof. Suppose that for some scalars c1 , · · · , cm+n−r , c1 u1 + · · · + cr ur + cr+1 b1 + · · · + cn bn−r + cn+1 b01 + · · · + cn+m−r b0m−r = 0.

(1)

Rewrite the equation into the following, c1 u1 + · · · + cr ur + cr+1 b1 + · · · + cn bn−r = −cn+1 b01 − · · · − cn+m−r b0m−r , or c1 u1 + · · · + cr ur + cn+1 b01 + · · · + cn+m−r b0m−r = −cr+1 b1 − · · · − cn bn−r . We see that both −cr+1 b1 − · · · − cn bn−r

− cn+1 b01 − · · · − cn+m−r b0m−r

and

belong to U ∩ V . This implies that −cr+1 b1 − · · · − cn bn = α1 u1 + · · · + αr ur −cn+1 b01

− · · · − cn+m−r b0m−r = β1 u1 + · · · + βr ur .

Rewrite the 1st equation into the form α1 u1 + · · · + αr ur + cr+1 b1 + · · · + cn bn−r = 0, it follows that α1 = · · · = αr = cr+1 = · · · = cn = 0 by linear independence of u1 , · · · , ur , b1 , · · · , bn−r . Similarly, β1 = · · · = βr = cn+1 = · · · = cn+m−r = 0. Therefore, we get c1 u1 + · · · + cr ur = 0. The linear independence of u1 , · · · , ur forces c1 = · · · = cr = 0. To sum up, c1 = · · · = cr = cr+1 = · · · = cn = cn+1 = · · · = cn+m−r = 0. As u1 , · · · , ur , b1 , · · · , bn−r , b01 , · · · , b0m−r form a basis for U + V , dim(U + V ) = r + (n − r) + (m − r) = m + n − r = dim U + dim V − dim(U ∩ V ). 2

This completes the proof. 1. (Only if part) Let x ∈ N (Q), i.e. Qx = 0. Write     x1 xm+1  0 x     x= where x0 =  ...  ∈ Rm and x00 =  ...  ∈ Rr . x00 xm xm+r Observe Qx = (I

A)x = Ix0 + Ax00 , we have x0 = −Ax00 . x0 x00

 (If part) Suppose x =



where x0 ∈ Rm and x00 ∈ Rr satisfy x0 = −Ax00 . Then, x0 A) x00 

Qx = (I as x0 = −Ax00 .   −A = (b1 2. Write Ir



= Ix0 + Ax00 = 0

 b2 · · · br ) where bj denotes the jth column of the matrix

 −A . Ir

We shall prove the following two assertions. 1◦ Span(b1 , · · · , br ) = N (Q).   −aj Proof. Observe that bj = where aj is the jth column of A and ej ej = (0 · · · |{z} 1 · · · 0)T ∈ Rr . jth

Then Qbj = (I

  −aj = −aj +Aej = −aj +aj = 0. ∴ bj ∈ N (Q) for all j = 1, · · · , r. A) ej

As N (Q) is a vector space, all linear combination of b1 , · · · , br belong to N (Q). ∴ Span(b1 , · · · , br ) ⊂ N (Q). · · · · · · · · · · · · · · · · · · · · · · · · · · · (∗)  0 x Next, let x ∈ N (Q). Then by part (a), x = where x0 = −Ax00 . x00 As x00 ∈ Rr , we can write x00 = x1 e1 + x2 e2 + · · · + xr er , where {e1 , · · · , er } is the standard basis for Rr . When x00 = x1 e1 + x2 e2 + · · · + xr er , we have x0 = −Ax00 = −x1 Ae1 − x2 Ae2 − · · · − xr Aer = x1 (−a1 ) + x2 (−a2 ) + · · · + xr (−ar ). Consequently,  0       x −a1 −a2 −ar x= = x1 + x2 + · · · + xr = x1 b1 + · · · + xr br . x00 e1 e2 er 3

∴ N (U ) ⊂ Span(b1 , · · · , br ). Together with (∗), we conclude N (U ) = Span(b1 , · · · , br ). 2◦ b1 , · · · , br are linearly independent. Proof.   It suffices to show Xc = 0 has only trivial solution where X = (b1 · · · br ) = −A . Ir Note that c ∈ Rr . Now, Xc = 0



  −A c=0 Ir



  −Ac = 0. c

∴ c = 0. This completes the proof by 1◦ and 2◦ , Let E1 , · · · , Ek be elementary matrices such that   I` A . U E1 · · · Ek = 0 0 Denote U 0 = U E1 · · · Ek . 1◦ dim N (U 0 ) = dim N (U ).† Proof. Exercise. [Hint: Let {v1 , · · · , vn } be a basis for N (U 0 ). Write E = E1 · · · Ek , show that Ev1 , · · · , Evn form a basis for N (U ) by proving the following claims: Claim i: Ev1 , · · · , Evn are linearly independent. Proof. Suppose c1 Ev1 + · · · + cn Evn = 0. Then E(c1 v1 + · · · + cn vn ) = 0 .... c1 v1 + · · · + cn vn = 0 .... (Fill in the details, you need to use the invertibility of E and linear independence of v1 , · · · , vn .) Claim ii: Ev1 , · · · , Evn span N (U ). Proof. Let x ∈ N (U ). Then U x = 0 ... E −1 x ∈ N (U 0 ) .... (To fill in the details, make use of the nonsingularity of E and the fact that v1 , · · · , vn spans N (U 0 ).) Finally, count the number elements in these two bases (for N (U 0 ) and N (U ) respectively), you can conclude dim N (U 0 ) = dim N (U ).] Let Q = (I` 2◦

N (U 0 )

A).

= N (Q). Proof. Exercise. 

 −A By Part (b) of Question 5, the columns of form a basis for N (Q). In−` Thus dim N (Q) = n − `. By 1◦ and 2◦ , we conclude dim N (U ) = n − `. †

0 Note that   N (U ) 6=  N (U) in general, but their dimensions are the same. Here is a counterexample: let 1 0 0 1 U= and E = , then N (U ) = Span(e2 ) but N (U E) = Span(e1 ). 0 0 1 0

4

Related Documents

08 Bass 3 Sol
June 2020 1
Sol 3
October 2019 6
Ed Sep 08 Sol
May 2020 6
Aritmetika 08-09 Sol
November 2019 4
Bass
November 2019 31
Wss Bass 3
May 2020 7