RESISTENCIA DE MATERIALES II (CIV-203)
1. MÉTODO DOBLE INTEGRACION De la estática. ∑ MB = 0
RC ((L)) - M2 + M1 = 0
M2 - M1 RC ≔ ――― L
∑ FV = 0
RB + RC = 0
⎛ M2 - M1 ⎞ RB ≔ -⎜―――⎟ L ⎝ ⎠
b. Ecuaciones de Momento Flector para cada tramo Corte I-I
TRAMO AB x ≤ L
MAB ≔ -M1
Corte II-II TRAMO BC L < x ≤ 2 L
Corte III-III TRAMO CD 2 L < x ≤ 3 L
⎛ M2 - M1 ⎞ MBC ≔ -M1 - ⎜―――⎟ ⋅ ((x - L)) L ⎝ ⎠
⎛ M2 - M1 ⎞ ⎛ M2 - M1 ⎞ MCD ≔ -M1 - ⎜―――⎟ ((x - L)) + ⎜―――⎟ ⋅ ((x - 2 L)) L L ⎝ ⎠ ⎝ ⎠
c. Método Doble Integración
Corte I-I
TRAMO AB x ≤ L
d2 2 E ⋅ I ⋅ ―― y = MAB d x2
Ecuación de Momento Flector :
MAB ((x)) ≔ -M1
Ecuación de Deformacion Angular:
1 ⎛⎝-M1 ⋅ x + C1⎞⎠ θAB ((x)) = ―― EI
Ecuacion de Deflexion:
⎞ 1 ⎛ x2 yAB ((x)) = ―― + C1 ⋅ x + C2⎟ ⎜-M1 ⋅ ―― EI ⎝ 2 ⎠
Corte II-II TRAMO BC L < x ≤ 2 L
d2 2 E ⋅ I ⋅ ―― y = MBC d x2
Ecuación de Momento Flector : Ecuación de Deformacion Angular: Ecuacion de Deflexion:
Corte III-III TRAMO CD 2 L < x ≤ 3 L Ecuación de Momento Flector : Ecuación de Deformacion Angular: Ecuacion de Deflexion:
⎛ M2 - M1 ⎞ MBC ((x)) ≔ -M1 - ⎜―――⎟ ⋅ ((x - L)) L ⎝ ⎠ 2 ⎛ ⎞ ⎛ M2 - M1 ⎞ ((x - L)) 1 ⎜ θBC ((x)) = ―― -M1 ⋅ x - ⎜―――⎟ ⋅ ―――+ C3⎟ ⎟⎠ EI ⎜⎝ L 2 ⎝ ⎠ 3 ⎛ ⎞ 2 ⎛ M2 - M1 ⎞ ((x - L)) 1 ⎜ x yBC ((x)) = ―― -M1 ⋅ ―― - ⎜―――⎟ ⋅ ―――+ C3 ⋅ x + C4⎟ ⎟⎠ EI ⎜⎝ 2 L 6 ⎝ ⎠ d2 2 E ⋅ I ⋅ ―― y = MCD d x2 ⎛ M2 - M1 ⎞ ⎛ M2 - M1 ⎞ MCD ((x)) ≔ -M1 - ⎜―――⎟ ((x - L)) + ⎜―――⎟ ⋅ ((x - 2 L)) L L ⎝ ⎠ ⎝ ⎠ 2 2 ⎛ ⎞ ⎛ M2 - M1 ⎞ ((x - L)) ⎛ M2 - M1 ⎞ ((x - 2 L)) 1 ⎜ ( ) θCD (x) = ―― -M1 ⋅ x - ⎜―――⎟ ―――+ ⎜―――⎟ ⋅ ―――― + C5⎟ ⎟⎠ EI ⎜⎝ L 2 L 2 ⎝ ⎠ ⎝ ⎠ 3 3 ⎛ ⎞ ⎛ M2 - M1 ⎞ ((x - 2 L)) 1 ⎜ x 2 ⎛ M2 - M1 ⎞ ((x - L)) yCD ((x)) = ―― -M1 ⋅ ―― - ⎜―――⎟ ―――+ ⎜―――⎟ ⋅ ―――― + C5 ⋅ x + C6⎟ ⎟⎠ EI ⎜⎝ 2 L 6 L 6 ⎝ ⎠ ⎝ ⎠
RESISTENCIA DE MATERIALES II (CIV-203)
Por condicion del problema: Por Condiciones de Apoyo x≔0
EI ≔ 2500000
L ≔ 2.5
yA ≔ 0.018 m
⎞ solve , C2 1 ⎛ x2 0.018 = ―― → 45000.0 + C1 ⋅ x + C2⎟ ――― ⎜-M1 ⋅ ―― EI ⎝ 2 ⎠
x ≔ 2.5
C2 ≔ 45000.0
yB ≔ 0 m
⎞ solve , C1 1 ⎛ x2 0 = ―― → 1.25 ⋅ M1 - 18000.0 + C1 ⋅ x + C2⎟ ――― ⎜-M1 ⋅ ―― EI ⎝ 2 ⎠
C1 ≔ 1.25 ⋅ M1 - 18000.0
Por Continuidad x ≔ 2.5
θI = θII
yI = yII
2 ⎛ ⎞ solve , C ⎛ M2 - M1 ⎞ ((x - L)) 3 1 1 ⎜ ⎛⎝-M1 ⋅ x + C1⎞⎠ = ―― -M1 ⋅ x - ⎜―――⎟ ⋅ ―――+ C3⎟ ――― → 1.25 ⋅ M1 - 18000.0 ―― ⎟⎠ EI EI ⎜⎝ L 2 ⎝ ⎠
C3 ≔ 1.25 ⋅ M1 - 18000.0
3 ⎛ ⎞ solve , C ⎞ 4 1 ⎛ x2 1 ⎜ x 2 ⎛ M2 - M1 ⎞ ((x - L)) + C1 ⋅ x + C2⎟ = ―― -M1 ⋅ ―― - ⎜―――⎟ ⋅ ―――+ C3 ⋅ x + C4⎟ ――― → 45000.0 ―― ⎜-M1 ⋅ ―― ⎟⎠ EI ⎝ 2 2 L 6 ⎠ EI ⎜⎝ ⎝ ⎠
C4 ≔ 45000.0
x≔5
θII = θIII
yII = yIII
2 2 2 ⎛ ⎞ ⎛ ⎞ solve , C ⎛ M2 - M1 ⎞ ((x - L)) ⎛ M2 - M1 ⎞ ((x - L)) ⎛ M2 - M1 ⎞ ((x - 2 L)) 5 1 ⎜ 1 ⎜ -M1 ⋅ x - ⎜―――⎟ ⋅ ―――+ C3⎟ = ―― -M1 ⋅ x - ⎜―――⎟ ―――+ ⎜―――⎟ ⋅ ―――― + C5⎟ ――― → 1.25 ⋅ M1 - 18000.0 ―― ⎟⎠ EI ⎜⎝ ⎟⎠ EI ⎜⎝ L 2 L 2 L 2 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
C5 ≔ 1.25 ⋅ M1 - 18000.0 3 3 3 ⎛ ⎛ ⎞ ⎞ ⎛ M2 - M1 ⎞ ((x - L)) ⎛ M2 - M1 ⎞ ((x - L)) ⎛ M2 - M1 ⎞ ((x - 2 L)) solve , C6 1 ⎜ x2 1 ⎜ x2 -M1 ⋅ ―― - ⎜―――⎟ ⋅ ――― + C3 ⋅ x + C4⎟ = ―― -M1 ⋅ ―― - ⎜―――⎟ ――― + ⎜―――⎟ ⋅ ―――― + C5 ⋅ x + C6⎟ ―――→ 45000.0 ―― ⎟⎠ EI ⎜⎝ ⎟⎠ EI ⎜⎝ 2 2 L 6 L 6 L 6 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
C6 ≔ 45000 x ≔ 7.5
yD ≔ 0.012 m
3 3 ⎛ ⎞ ⎛ M2 - M1 ⎞ ((x - L)) ⎛ M2 - M1 ⎞ ((x - 2 L)) float , 3 1 ⎜ x2 0.012 = ―― -M1 ⋅ ―― - ⎜―――⎟ ―――+ ⎜―――⎟ ⋅ ―――― + C5 ⋅ x + C6⎟ ――― → 0.012 = -0.00000458 ⋅ M1 + -0.00000292 ⋅ M2 - 0.036 ⎟ EI ⎜⎝ 2 L L 6 6 ⎝ ⎠ ⎝ ⎠ ⎠
x≔5
yc ≔ 0 m
0.048 = -0.00000458 ⋅ M1 - 0.00000292 ⋅ M2
3 ⎛ ⎞ ⎛ M2 - M1 ⎞ ((x - L)) float , 3 1 ⎜ x2 0 = ―― -M1 ⋅ ―― - ⎜―――⎟ ⋅ ―――+ C3 ⋅ x + C4⎟ ――― → 0 = -0.00000208 ⋅ M1 + -⎛⎝4.17 ⋅ 10 -7⎞⎠ ⋅ M2 - 0.018 ⎟⎠ EI ⎜⎝ 2 L 6 ⎝ ⎠
-0.00000208 ⋅ M1 - ⎛⎝4.17 ⋅ 10 -7⎞⎠ ⋅ M2 = 0.018
RESISTENCIA DE MATERIALES II (CIV-203)
RESOLVIENDO EL SISTEMA TENEMOS:
⎡ -0.00000458 -0.00000292 ⎤ ⎢ -7 ⎥ ⎣ -0.00000208 -⎛⎝4.17 ⋅ 10 ⎞⎠ ⎦
-1
⎡ -7816.0499935154452487 ⎤ ⎡ 0.048 ⎤ ⋅⎢ → ―⎢ ⎥ 0.018 ⎣ ⎦ ⎣ -4178.9352841435824523 ⎥⎦
M1 ≔ -7816.050 M2 ≔ -4178.935